Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-27T06:47:31.076Z Has data issue: false hasContentIssue false

Pressure-induced nanocrystallization of Zr55Al10Ni5Cu30 bulk metallic glass

Published online by Cambridge University Press:  31 January 2011

Jia Zhang*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
K. Q. Qiu
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
A. M. Wang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
H. F. Zhang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
M. X. Quan
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
Z. Q. Hu
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
*
a) Address all correspondence to this author. e-mail: jzhang@imr.ac.cn
Get access

Abstract

The effect of pressure on the crystallization behavior of Zr55Al10Ni5Cu30 bulk metallic glass was investigated by differential scanning calorimetry, x-ray diffraction, and transmission electron microscopy. Although the crystallization products under high pressure were about the same as those under ambient pressure, the evident changes in the relative crystallization fraction of each phase were observed. The applied pressure enhanced the crystallization temperature. Pressure annealing of the bulk metallic glass produced a composite with dispersion of very fine nanocrystallites in the amorphous matrix. A full nanocrystallization was obtained for the sample annealed under 5 GPa at 793 K. The mechanism for the pressure-induced nanocrystallization is discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Inoue, A., Zhang, T., Nishiyama, N., Ohba, K., and Masumoto, T., Mater. Trans., JIM 34, 1234 (1993).CrossRefGoogle Scholar
2.Peker, A. and Johnson, W.L., Appl. Phys. Lett. 63, 2342 (1993).CrossRefGoogle Scholar
3.Inoue, A. and Gook, J.S., Mater. Trans., JIM 36, 1180 (1995).CrossRefGoogle Scholar
4.Inoue, A., Nishiyama, N., and Masumoto, T., Mater. Trans., JIM 37, 181 (1996).CrossRefGoogle Scholar
5.Flores, K.M. and Dauskardt, R.H., Acta Mater. 49, 2527 (2001).CrossRefGoogle Scholar
6.Johnson, W.L. and Peker, A., in Science and Technology of Rapid Solidification and Processing, edited by Otooni, M.A. (Kluwer, Dordrecht, 1995), p. 25.CrossRefGoogle Scholar
7.Fan, C. and Inoue, A., Mater. Trans., JIM 38, 1040 (1997).CrossRefGoogle Scholar
8.Busch, R., Schneider, S., Peker, A., and Johnson, W.L., Appl. Phys. Lett. 67, 1544 (1995).CrossRefGoogle Scholar
9.Fan, C., Takeuchi, A., and Inoue, A., Mater. Trans., JIM 40, 42 (1999).CrossRefGoogle Scholar
10.Xing, L.Q., Eckert, J., Loser, W., and L. Schultz, Appl. Phys. Lett. 74, 664 (1999).CrossRefGoogle Scholar
11.Inoue, A., Mater. Trans. Japan. Inst. Metals 37, 866 (1995).Google Scholar
12.Kulik, T., J. Non-Cryst. Solids 287, 145 (2001).CrossRefGoogle Scholar
13.Wang, W.K., Wang, Y.J., He, S.A., and Iwasaki, H., Z. Phys. Lett. 69, 48 (1988).Google Scholar
14.Wang, W.H., Wang, R.J., Dai, D.Y., Zhao, D.Q., Pan, M.X., and Yao, Y.S., Appl. Phys. Lett. 79, 1106 (2001).CrossRefGoogle Scholar
15.Gao, L.Y., Xue, Y., Chen, F., Xiong, Q., Meng, R.L., Amirez, D.R., and Mao, H.K., Physica C 235, 1493 (1994).CrossRefGoogle Scholar
16.Parker, L.J., Atou, T., and Badding, J.V., Science 273, 95 (1996).CrossRefGoogle Scholar
17.Wang, W.H., He, D.W., Zhao, D.Q., Yao, Y.S., and He, M., Appl. Phys. Lett. 75, 2770 (1999).CrossRefGoogle Scholar
18.Inoue, A. and Zhang, T., Mater. Trans., JIM 37, 185 (1996).CrossRefGoogle Scholar
19.Li, D.J., Ding, D.Z., Yao, B., Wang, A.M., Hu, Z.Q., Li, S.L., and Wei, W.D., Nanostruct. Mater. 40, 323 (1993).Google Scholar
20.Inoue, A., Negishi, T., Kimuar, H.M., Zhang, T., and Yavari, A.R., Mater. Trans., JIM 39, 318 (1998).CrossRefGoogle Scholar
21.Oliveira, M.F. de, Kiminami, C.S., and Filho, W.J. Botta, Mater. Sci. Eng. 304–306A, 665 (2001).CrossRefGoogle Scholar
22.Jiang, J.Z., Olsen, J.S., Gerward, L., Abdali, S., Eckert, J., Boer, N. Schlorke-de, Schultz, L., Truckenbrodt, J., and Shi, P.X., J. Appl. Phys. 87, 2664 (2000).CrossRefGoogle Scholar
23.Jiang, J.Z., Zhou, T.J., Rasmussen, H.K., U. Kuhn, Eckert, J., and C. Lathe, Appl. Phys. Lett. 77, 3553 (2000).CrossRefGoogle Scholar
24.Jiang, J.Z., Zhuang, Y.X., Rasmussen, H., Nishiyama, N., Inoue, A., and Lathe, C., Europhys. Lett. 54, 182 (2001).CrossRefGoogle Scholar
25.Xing, P.F., Zhuang, Y.X., Wang, W.H., Gerward, L., and Jiang, J.Z., J. Appl. Phys. 91, 4956 (2002).CrossRefGoogle Scholar
26.Inoue, A., Acta Mater. 48, 279 (2000).CrossRefGoogle Scholar