Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-19T12:09:09.408Z Has data issue: false hasContentIssue false

Preparation of porous niobium oxide by the exfoliation of K4Nb6O17 and its photocatalytic activity

Published online by Cambridge University Press:  31 January 2011

Ryu Abe
Affiliation:
Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226, Japan
Kiyoaki Shinohara
Affiliation:
Nikon Corp., 1–10–1 Asamizodai, Sagamihara 228, Japan
Akira Tanaka
Affiliation:
Nikon Corp., 1–10–1 Asamizodai, Sagamihara 228, Japan
Michikazu Hara
Affiliation:
Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226, Japan
Junko N. Kondo
Affiliation:
Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226, Japan
Kazunari Domen
Affiliation:
Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226, Japan
Get access

Abstract

A new porous material was prepared from a layered compound, K4Nb6O17, through the exfoliation of its layers. A composite of the niobate sheets and MgO particles were obtained by precipitating the exfoliated two-dimensional niobate sheets with MgO fine particles. Porous niobium oxide was obtained by removal of the MgO particles from the composite after thermal treatment. It had a large surface area and showed higher photocatalytic activity than the original H+/K4Nb6O17 for H2 evolution from various aqueous alcohol solutions.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Domen, K., Kudo, A., Shibata, M., Tanaka, A., Maruya, K., and Onishi, T., J. Chem. Soc., Chem. Commun., 1706 (1986).CrossRefGoogle Scholar
2.Kudo, A., Tanaka, A., Domen, K., Maruya, K., Aika, K., and Onishi, T., J. Catal. 111, 67 (1988).CrossRefGoogle Scholar
3.Kudo, A., Sayama, K., Tanaka, A., Asakura, K., Domen, K., and Onishi, T., J. Catal. 120, 337 (1989).CrossRefGoogle Scholar
4.Sayama, K., Tanaka, A., Domen, K., Maruya, K., and Onishi, T., Catal. Lett. 4, 217 (1990).CrossRefGoogle Scholar
5.Sayama, K., Tanaka, A., Domen, K., Maruya, K., and Onishi, T., J. Phys. Chem. 95, 1345 (1991).CrossRefGoogle Scholar
6.Sayama, K., Tanaka, A., Domen, K., Maruya, K., and Onishi, T., J. Catal. 124, 541 (1990).CrossRefGoogle Scholar
7.Nassau, K., Shiever, J. W., and Bernstein, J. L., J. Electrochem. Soc. 116, 348 (1969).CrossRefGoogle Scholar
8.Gesperin, M. and Bihan, M-T. L., J. Solid State Chem. 43, 346 (1982).CrossRefGoogle Scholar
9.Lee, H., Kepley, L. J., Hong, H., and Mallouk, T. E., J. Am. Chem. Soc. 110, 618 (1988).CrossRefGoogle Scholar
10.Keller, S. W., Kim, H-N., and Mallouk, T. E., J. Am. Chem. Soc. 116, 8817 (1994).CrossRefGoogle Scholar
11.Domen, K., Ebina, Y., Ikeda, S., Tanaka, A., Kondo, J. N., and Maruya, K., Catal. Today, 28, 167 (1996).CrossRefGoogle Scholar