Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-27T09:01:26.508Z Has data issue: false hasContentIssue false

Preparation and Microstructure Characterization of Anodic Spark Deposited Barium Titanate Conversion Layers

Published online by Cambridge University Press:  31 January 2011

J. Schreckenbach
Affiliation:
Institut für Chemie, Technische Universität Chemnitz, D-09107, Chemnitz, Germany
F. Schlottig
Affiliation:
Institut für Chemie, Technische Universität Chemnitz, D-09107, Chemnitz, Germany
G. Marx
Affiliation:
Institut für Chemie, Technische Universität Chemnitz, D-09107, Chemnitz, Germany
W. M. Kriven
Affiliation:
Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801
O. O. Popoola
Affiliation:
Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801
M. H. Jilavi
Affiliation:
Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801
S. D. Brown
Affiliation:
Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801
Get access

Abstract

Anodic spark deposition (ASD) is an advanced plasma-electrochemical coating process to prepare polycrystalline, ceramic-like conversion coatings on metal surfaces. As an example, polycrystalline barium titanate (BaTiO3) phases have been prepared by the anodic conversion of metal substrate and the metal ions in the electrolyte. By a combination of various characterization techniques, the configuration of the coating was elucidated. On the metal substrate a thin (~50 nm) passivating amorphous film of titania (TiO2) first forms, which subsequently changes to anatase and rutile structures. With increasing anodic potentials, a plasma-chemical conversion reaction starts, leading to the heterogeneous formation of BaTiO3 layers of 2–10 μm thickness. The results of this study lead to the formulation of a model describing a polycrystalline and inhomogeneous layer configuration.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Switzer, J. A., Am. Ceram. Soc. Bull. 66, 1521 (1987).Google Scholar
2.Searson, P. C. and Moffat, T. P., Crit. Rev. Surf. Chem. 3, 171 (1994).Google Scholar
3.Kubo, T. and Shinriki, K., Kogyo Akagu Zasshi 56, 335 (1953).CrossRefGoogle Scholar
4.Tunkasiri, T. and Rujijanagul, G., J. Mater. Sci. Lett. 13, 165 (1994).CrossRefGoogle Scholar
5.David, V.P., Zhang, H., Wills, L. A., and Wessels, B. W., J. Mater. Res. 9, 426 (1994).CrossRefGoogle Scholar
6.Shi, E., Cho, C. R., Jang, M. S., Jeong, S. Y., and Kim, H. J., J. Mater. Res. 9, 2914 (1994).CrossRefGoogle Scholar
7.Ishizanwa, N., Banno, H., Hayashi, M., Yoo, S.E., and Yoshimura, M., Jpn. J. Appl. Phys. 29, 2467 (1990).CrossRefGoogle Scholar
8.Yoo, S.E., Yoshimura, M., and Sōmiya, S., J. Mater. Sci. Lett. 8, 530 (1989).CrossRefGoogle Scholar
9.Bacsa, R., Ravindranathan, P., and Dougherty, J. P., J. Mater. Res. 7, 423 (1992).CrossRefGoogle Scholar
10.Bacsa, R.R. and Dougherty, J. P., J. Mater. Sci. Lett. 14, 600 (1995).Google Scholar
11.Kajiyoshi, K., Hamaji, Y., Tomono, K., Kasanami, T., and Yoshimura, M., J. Am. Ceram. Soc. 79, 613 (1996).CrossRefGoogle Scholar
12.Bacsa, R., Rutsch, G., and Dougherty, J. P., J. Mater. Res. 1, 194 (1996).CrossRefGoogle Scholar
13.Venigilla, S., Bendale, P., and Adair, J. H., J. Electrochem. Soc. 142, 2102 (1995).Google Scholar
14.Hayashi, M., Ishizawa, N., Yoo, S. E., and Yoshimura, M., J. Ceram. Soc. Jpn. 98, 930 (1990).CrossRefGoogle Scholar
15.Panitz, J. K. and Hu, C. C., Ferroelectrics 27, 161 (1980).CrossRefGoogle Scholar
16.Kim, S., Hishita, S., Kang, Y. M., and Baik, S., J. Appl. Phys. 78, 5604 (1996).CrossRefGoogle Scholar
17.Rajendran, M. and Rao, M. S., J. Solid State Chem. 113, 239 (1994).CrossRefGoogle Scholar
18.Kim, S., Manabe, T., Yamaguchi, I., Kumagai, T., and Mizuta, S., J. Mater. Res. 12, 1141 (1997).CrossRefGoogle Scholar
19.Wirtz, G.P., Brown, S.D., and Kriven, W. M., Mater. Manufacturing Processes 6, 87 (1991).CrossRefGoogle Scholar
20.Schreckenbach, J., Metalloberfläche 45, 437 (1991).Google Scholar
21.Koshkarian, K.A. and Kriven, W.M., in New Materials Approaches to Tribology: Theory and Applications, edited by Pope, L. E., Fehrenbacher, L., and Winer, W. O. (Mater. Res. Soc. Symp. Proc. 140, Pittsburgh, PA, 1989), p. 369.Google Scholar
22.Schreckenbach, J., Popoola, O. O., Kriven, W. M., Schlottig, F., and Marx, G., 8. Tagung Festkörperanalytik, Vienna, Austria (1995).Google Scholar
23.Schreckenbach, J., Popoola, O. O., Kriven, W. M., Brown, S. H., and Wirtz, G. P., Abstracts of Ann. Mtg. Electrochem Soc., Chicago, IL (1995).Google Scholar
24.Kurze, P., Krysmann, W., Schreckenbach, J., Schwarz, T., and Rabending, K., Cryst. Res. Technol. 22, 53 (1987).CrossRefGoogle Scholar
25.Strecker, A., Salzberger, U., and Mayer, J., Prakt. Metallogr. 30, 482 (1993).CrossRefGoogle Scholar
26.Limar, T.F., Tscherednitschenko, I.F., and Kisel, N. G., Isv. Aka. Nauk. SSSR Neorg. Mater. 12, 684 (1976).Google Scholar
27.Varma, H.K., Pillai, P. K, Mani, T. V., Warrier, K. G. K., and Damondaran, A. D., J. Am. Ceram. Soc. 77 (1), 129 (1994).CrossRefGoogle Scholar
28.Fujiomoto, K., Kobayashi, Y., and Kubota, K., Thin Solid Films 169, 249 (1989).CrossRefGoogle Scholar
29.Ikawa, H., Yamada, T., Kojiama, K., and Matsumoto, S., J. Am. Ceram. Soc. 74, 1459 (1991).CrossRefGoogle Scholar
30.Mukhpadhyay, S.M. and Chen, T. S., J. Mater. Res. 10, 1502 (1995).CrossRefGoogle Scholar
31.Lee, B.W. and Auh, K.H., J. Mater. Res. 10, 1418 (1995).CrossRefGoogle Scholar
32.Begg, B.D., Vance, E. R., and Nowotny, I., J. Am. Ceram. Soc. 77, 3186 (1994).CrossRefGoogle Scholar
33.Hsiang, H.I., Yen, F-S., and Huang, C-Y., Jpn. J. Appl. Phys. 34, 19221925 (1995).CrossRefGoogle Scholar
34.Schreckenbach, J., Schlottig, F., Dietrich, D., Hofmann, A., and Marx, G., J. Mater. Sci. Lett. 14, 1344 (1995).CrossRefGoogle Scholar
35.Schlottig, F., Schreckenbach, J., Witke, K., and Marx, G., Microchimica Acta 125, 161 (1997).CrossRefGoogle Scholar