Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-17T23:48:40.524Z Has data issue: false hasContentIssue false

Preparation and characterization of the defect–conductivity relationship of Ga-doped ZnO thin films deposited by nonreactive radio-frequency–magnetron sputtering

Published online by Cambridge University Press:  31 January 2011

M. Lalanne
Affiliation:
Université de Toulouse UPS-INP-CNRS, Institut Carnot CIRIMAT, 31062 Toulouse Cedex 4, France
J.M. Soon
Affiliation:
Université de Toulouse UPS-INP-CNRS, Institut Carnot CIRIMAT, 31062 Toulouse Cedex 4, France
A. Barnabé*
Affiliation:
Université de Toulouse UPS-INP-CNRS, Institut Carnot CIRIMAT, 31062 Toulouse Cedex 4, France
L. Presmanes
Affiliation:
Université de Toulouse UPS-INP-CNRS, Institut Carnot CIRIMAT, 31062 Toulouse Cedex 4, France
I. Pasquet
Affiliation:
Université de Toulouse UPS-INP-CNRS, Institut Carnot CIRIMAT, 31062 Toulouse Cedex 4, France
Ph. Tailhades
Affiliation:
Université de Toulouse UPS-INP-CNRS, Institut Carnot CIRIMAT, 31062 Toulouse Cedex 4, France
*
a)Address all correspondence to this author. e-mail: barnabe@chimie.ups-tlse.fr
Get access

Abstract

Ga-doped ZnO (ZnO:Ga) thin films were prepared by radio-frequency–magnetron sputtering on conventional glass substrates at room temperature. The structural, electrical, and optical properties of these films as a function of argon pressure and film thicknesses were studied. All the films crystallized with the hexagonal wurtzite structure. The x-ray diffraction studies show that the ZnO:Ga films are highly oriented with their crystallographic c-axis perpendicular to the substrate. We discuss a methodology of using a “standardized platform” for comparison of samples deposited at different pressures, which provides an insight into the defect–resistivity relationship of each sample with respect to their microstructure. After the first annealing, the electrical properties of the films are dependent on the atmosphere used during postdeposition annealing treatment. A resistivity of 2.5 × 10−3 Ω · cm was obtained after vacuum annealing, and the films became an insulator after air annealing. The reproducibility of this treatment was verified. The average transmittance of all ZnO:Ga thin films is more than 85% in the visible range.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Özgür, Ü., Alivov, Ya.I., Liu, C., Teke, A., Reshchikov, M.A., Doğan, S., Avrutin, V., Cho, S-J., Morkoç, H.: A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005)CrossRefGoogle Scholar
2.Berginski, M., Hüpkes, J., Reetz, W., Rech, B., Wuttig, M.: Recent development on surface-textured ZnO:Al films prepared by sputtering for thin-film solar cell application. Thin Solid Films 516, (17)S5836 (2008)CrossRefGoogle Scholar
3.Oh, B-Y., Jeong, M-C., Moon, T-H., Lee, W., Myoung, J-M., Hwang, J-Y., Seo, D-S.: Transparent conductive Al-doped ZnO films for liquid crystal displays. J. Appl. Phys. 99, 124505 (2006)CrossRefGoogle Scholar
4.Minami, T., Miyata, T., Ohtani, Y.: Optimization of aluminum-doped ZnO thin-film deposition by magnetron sputtering for liquid crystal display applications. Phys. Status Solidi. A 204, (9)3145 (2007)CrossRefGoogle Scholar
5.ZnO and related materials. Superlattices and Microstructures 42, 1 (2007)CrossRefGoogle Scholar
6.Lewis, B.G., Paine, D.C.: Applications and processing of transparent conducting oxides. MRS Bull. 15, 22 (2000)CrossRefGoogle Scholar
7.Fortunato, E., Gonçalves, A., Assunção, V., Marques, A., Águas, H., Pereira, L., Ferreira, I., Martins, R.: Growth of ZnO:Ga thin films at room temperature on polymeric substrates: Thickness dependence. Thin Solid Films 442, 121 (2003)CrossRefGoogle Scholar
8.Assunção, V., Fortunato, E., Marques, A., Águas, H., Ferreira, I., Costa, M.E.V., Martins, R.: Influence of the deposition pressure on the properties of transparent and conductive ZnO:Ga thin-film produced by r.f. sputtering at room temperature. Thin Solid Films 427, 401 (2003)CrossRefGoogle Scholar
9.Yu, X., Ma, J., Ji, F., Wang, Y., Zhang, X., Cheng, C., Ma, H.: Effects of sputtering power on the properties of ZnO:Ga films deposited by r.f. magnetron-sputtering at low temperature. J. Cryst. Growth 274, 474 (2005)CrossRefGoogle Scholar
10.Yim, K., Lee, C.: Dependence of the electrical and optical properties of sputter-deposited ZnO:Ga films on the annealing temperature, time, and atmosphere. J. Mater. Sci. Mater. Electron. 18, 385 (2007)CrossRefGoogle Scholar
11.Major, S., Banerjee, A., Chopra, K.L.: Annealing studies of undoped and indium doped films of zinc oxide. Thin Solid Films 122, 31 (1984)CrossRefGoogle Scholar
12.Kim, K.H., Park, K.C., Ma, D.Y.: Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering. J. Appl. Phys. 81, (12)7764 (1997)CrossRefGoogle Scholar
13.Wasa, K., Kitabatake, M., Adachi, H.: Thin Film Materials Technology—Sputtering of Compound Materials (Springer, William Andrew Publishing, New York 2004)Google Scholar
14.Aghamalyan, N.R., Kafadaryan, E.A., Hovsepyan, R.K., Petrosyan, S.I.: Absorption and reflection analysis of transparent conductive Ga-doped ZnO films. Semicond. Sci. Technol. 20, 80 (2005)CrossRefGoogle Scholar
15.de Souza Gonçalves, A., Marques de Lima, S.A., Davolos, M.R., Antonio, S.G., de Oliveira Paiva-Santos, C.: The effects of ZnGa2O4 formation on structural and optical properties of ZnO:Ga powders. J. Solid State Chem. 179, 1330 (2006)CrossRefGoogle Scholar
16.Yu, X., Ma, J., Ji, F., Wang, Y., Cheng, C., Ma, H.: Thickness dependence of properties of ZnO:Ga films deposited by rf magnetron sputtering. Appl. Surf. Sci. 245, 310 (2005)CrossRefGoogle Scholar
17.Bouderbala, M., Hamzaoui, S., Amrani, B., Reshak, A.H., Adnane, M., Sahraoui, T., Zerdali, M.: Thickness dependence of structural, electrical and optical behaviour of undoped ZnO thin films. Physica B 403, 3326 (2008)CrossRefGoogle Scholar
18.Oudrhiri-Hassani, F., Presmanes, L., Barnabé, A., Tailhades, P.: Microstructure and roughness of RF sputtered oxide thin films: Characterization and modelization. Appl. Surf. Sci. 254, 5796 (2008)CrossRefGoogle Scholar
19.Capdeville, S., Alphonse, P., Bonningue, C., Presmanes, L., Tailhades, P.: Microstructure and electrical properties of sputter deposited Zn0.87Fe2.13O4 thin layers. J. Appl. Phys. 96, (11)6142 (2004)CrossRefGoogle Scholar
20.Ellmer, K.: Electrical properties, Transparent Conductive Zinc Oxide—Basics and Applications in Thin Film Solar Cells edited by Ellmer, K., Klein, A., and Rech, B. (Springer 2008)35 CrossRefGoogle Scholar
21.Huang, G-Y., Wang, C-Y., Wang, J-T.: First-principles study of diffusion of oxygen vacancies and interstitials in ZnO. J. Phys. Condens. Matter 21, (19)195403 (2009)CrossRefGoogle ScholarPubMed
22.Cheong, K.Y., Muti, N., Ramanan, S.R.: Electrical and optical studies of ZnO:Ga thin films fabricated via the sol-gel technique. Thin Solid Films 410, 142 (2002)CrossRefGoogle Scholar
23.Gomez, H., Maldonado, A., de la, M., Olvera, L., Acosta, D.R.: Gallium-doped ZnO thin films deposited by chemical spray. Sol. Energy Mater. Sol. Cells 87, 107 (2005)CrossRefGoogle Scholar