Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-07-04T20:36:55.646Z Has data issue: false hasContentIssue false

Porosity and composition dependence on electrical and piezoresistive properties of thermoplastic polyurethane nanocomposites

Published online by Cambridge University Press:  09 August 2013

Reza Rizvi
Affiliation:
Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G8
Hani Naguib*
Affiliation:
Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G8; and Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G8
*
a)Address all correspondence to this author. e-mail: naguib@mie.utoronto.ca
Get access

Abstract

The development and characterization of pressure sensing porous nanocomposites are reported here. A thermoplastic polyurethane (TPU) was chosen as an elastomeric matrix, which was reinforced with multiwall carbon nanotubes (MWNTs) by high shear twin screw extrusion mixing. Porosity was introduced to the composites through the phase separation of a single TPU-carbon-dioxide gas solution. Interactions between MWNT and TPU were elucidated through calorimetry, gravimetric decomposition, conductivity measurements, and microstructure imaging. The piezoresistance (pressure–resistance) behavior of the nanocomposites was investigated and found to be dependent on MWNT concentration and nanocomposite microstructure. Mechanisms of piezoresistance in solid and porous nanocomposites are proposed.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Breuer, O. and Sundararaj, U.: Big returns from small fibers: A review of polymer/carbon nanotube composites. Polym. Compos. 25, 630645 (2004).CrossRefGoogle Scholar
Coleman, J.N., Khan, U., Blau, W.J., and Gun’ko, Y.K.: Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44, 16241652 (2006).CrossRefGoogle Scholar
Harris, P.J.F.: Carbon nanotube composites. Int. Mater. Rev. 49, 3143 (2004).CrossRefGoogle Scholar
Li, C., Thostenson, E.T., and Chou, T.: Sensors and actuators based on carbon nanotubes and their composites: A review. Compos. Sci. Technol. 68, 12271249 (2008).CrossRefGoogle Scholar
Kobashi, K., Villmow, T., Andres, T., and Pötschke, P.: Liquid sensing of melt-processed poly(lactic acid)/multi-walled carbon nanotube composite films. Sens. Actuators, B 134, 787795 (2008).CrossRefGoogle Scholar
Hu, N., Karube, Y., Arai, M., Watanabe, T., Yan, C., Li, Y., Liu, Y., and Fukunaga, H.: Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor. Carbon 48, 680687 (2010).CrossRefGoogle Scholar
Li, Y., Zhao, L., and Shimizu, H.: Electrically conductive polymeric materials with high stretchability and excellent elasticity by a surface coating method. Macromol. Rapid Commun. 32, 289294 (2011).CrossRefGoogle ScholarPubMed
Zhou, Y., He, B., Zhou, W., Huang, J., Li, X., Wu, B., and Li, H.: Electrochemical capacitance of well-coated single-walled carbon nanotube with polyaniline composites. Electrochim. Acta 49, 257262 (2004).CrossRefGoogle Scholar
Tahhan, M., Truong, V., Spinks, G.M., and Wallace, G.G.: Carbon nanotube and polyaniline composite actuators. Smart Mater. Struct. 12, 626632 (2003).CrossRefGoogle Scholar
Shi, J., Guo, Z., Zhan, B., Luo, H., Li, Y., and Zhu, D.: Actuator based on MWNT/PVA hydrogels. J. Phys. Chem. B 109, 1478914791 (2005).CrossRefGoogle ScholarPubMed
Bartholome, C., Derre, A., Roubeau, O., Zakri, C., and Poulin, P.: Electromechanical properties of nanotube-PVA composite actuator bimorphs. Nanotechnology 19, 325501 (2008).CrossRefGoogle ScholarPubMed
Allaoui, A., Bai, S., Cheng, H.M., and Bai, J.B.: Mechanical and electrical properties of a MWNT/epoxy composite. Compos. Sci. Technol. 62, 19931998 (2002).CrossRefGoogle Scholar
Bekyarova, E., Thostenson, E.T., Yu, A., Kim, H., Gao, J., Tang, J., Hahn, H.T., Chou, T-W., Itkis, M.E., and Haddon, R.C.: Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites. Langmuir 23, 39703974 (2007).CrossRefGoogle ScholarPubMed
Saeed, M.B. and Zhan, M.: Adhesive strength of nano-size particles filled thermoplastic polyimides. Part-I: Multi-walled carbon nano-tubes (MWNT)-polyimide composite films. Int. J. Adhes. Adhes. 27, 306318 (2007).CrossRefGoogle Scholar
Yurdumakan, B., Raravikar, N.R., Ajayan, P.M., and Dhinojwala, A.: Synthetic gecko foot-hairs from multiwalled carbon nanotubes. Chem. Commun. 30, 37993801 (2005).CrossRefGoogle Scholar
Webster, J.G.: Tactile Sensors for Robotics and Medicine (John Wiley and Sons, New York, NY, 1988).Google Scholar
Rowe, A.C.H., Donoso-Barrera, A., Renner, C., and Arscott, S.: Giant room-temperature piezoresistance in a metal-silicon hybrid structure. Phys. Rev. Lett. 100, 145501 (2008).CrossRefGoogle Scholar
Bloor, D., Donnelly, K., Hands, P.J., Laughlin, P., and Lussey, D.: A metal-polymer composite with unusual properties. J. Phys. D: Appl. Phys. 38, 28512860 (2005).CrossRefGoogle Scholar
Bauhofer, W. and Kovacs, J.Z.: A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 69, 14861498 (2009).CrossRefGoogle Scholar
Carpi, F. and De Rossi, D.: Electroactive polymer-based devices for e-textiles in biomedicine. IEEE Trans. Inf. Technol. Biomed. 9, 295318 (2005).CrossRefGoogle ScholarPubMed
Bautista-Quijano, J.R., Aviles, F., Aguilar, J.O., and Tapia, A.: Strain sensing capabilities of a piezoresistive MWCNT-polysulfone film. Sens. Actuators, A 159, 135140 (2010).CrossRefGoogle Scholar
Loh, K.J., Lynch, J.P., Shim, B.S., and Kotov, N.A.: Tailoring piezoresistive sensitivity of multilayer carbon nanotube composite strain sensors. J. Intell. Mater. Syst. Struct. 19, 747764 (2008).CrossRefGoogle Scholar
Hu, N., Karube, Y., Yan, C., Masuda, Z., and Fukunaga, H.: Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor. Acta Mater. 56, 29292936 (2008).CrossRefGoogle Scholar
Knite, M., Tupureina, V., Fuith, A., Zavickis, J., and Teteris, V.: Polyisoprene-multi-wall carbon nanotube composites for sensing strain. Mater. Sci. Eng., C 27, 11251128 (2007).CrossRefGoogle Scholar
Wichmann, M.H.G., Buschhorn, S.T., Gehrmann, J., and Schulte, K.: Piezoresistive response of epoxy composites with carbon nanoparticles under tensile load. Phys. Rev. B: Condens. Matter 80, 245437 (2009).CrossRefGoogle Scholar
Chen, L., Chen, G., and Lu, L.: Piezoresistive behavior study on finger-sensing silicone rubber/graphite nanosheet nanocomposites. Adv. Funct. Mater. 17, 898904 (2007).CrossRefGoogle Scholar
Stubler, N., Fritzsche, J., and Kluppel, M.: Mechanical and electrical analysis of carbon black networking in elastomers under strain. Polym. Eng. Sci. 51, 12061217 (2011).CrossRefGoogle Scholar
Lu, J., Lu, M., Bermak, A., and Lee, Y-K.: Study of piezoresistance effect of carbon nanotube-PDMS composite materials for nanosensors. (IEEE Computer Society 7th International Conference on Nanotechnology, August 2–5, 2007; Hong Kong, China).Google Scholar
Hwang, J., Jang, J., Hong, K., Kim, K.N., Han, J.H., Shin, K., and Park, C.E.: Poly(3-hexylthiophene) wrapped carbon nanotube/poly(dimethylsiloxane) composites for use in finger-sensing piezoresistive pressure sensors. Carbon 49, 106110 (2011).CrossRefGoogle Scholar
Dang, Z., Jiang, M., Xie, D., Yao, S., Zhang, L., and Bai, J.: Supersensitive linear piezoresistive property in carbon nanotubes-silicone rubber nanocomposites. J. Appl. Phys. 104, 024114 (2008).CrossRefGoogle Scholar
Klempner, D. and Frisch, K.C.: Handbook of Polymeric Foams and Foam Technology (Oxford University Press, New York, NY, 1991).Google Scholar
Strauss, W. and D'Souza, N.A.: Supercritical CO2 processed polystyrene nanocomposite foams. J. Cell. Plast. 40, 229241 (2004).CrossRefGoogle Scholar
Rizvi, R., Kim, J., and Naguib, H.: Synthesis and characterization of novel low density polyethylene-multiwall carbon nanotube porous composites. Smart Mater. Struct. 18, 104002 (2009).CrossRefGoogle Scholar
Matsunaga, K., Sato, K., Tajima, M., and Yoshida, Y.: Gas permeability of thermoplastic polyurethane elastomers. Polym. J. 37, 413417 (2005).CrossRefGoogle Scholar
Ito, S., Matsunaga, K., Tajima, M., and Yoshida, Y.: Generation of microcellular polyurethane with supercritical carbon dioxide. J. Appl. Polym. Sci. 106, 35813586 (2007).CrossRefGoogle Scholar
Naguib, H.E., Park, C.B., Reichelt, N., and Panzer, U.: Strategies for achieving ultra low-density polypropylene foams. Polym. Eng. Sci. 42, 14811492 (2002).CrossRefGoogle Scholar
Shen, J., Zeng, C., and Lee, L.J.: Synthesis of polystyrene-carbon nanofibers nanocomposite foams. Polymer 46, 52185224 (2005).CrossRefGoogle Scholar
Rizvi, R., Khan, O., and Naguib, H.E.: Development and characterization of solid and porous polylactide-multiwall carbon nanotube composites. Polym. Eng. Sci. 51, 4353 (2011).CrossRefGoogle Scholar
Barsoukov, E. and Macdonald, J.R.. Impedance Spectroscopy: Theory, Experiment, and Applications (John Wiley and Sons, Hoboken, NJ, 2005).CrossRefGoogle Scholar
Zhihua, P., Jingcui, P., Yanfeng, P., Yangyu, O., and Yantao, N.: Complex permittivity and microwave absorption properties of carbon nanotubes/polymer composite: A numerical study. Phys. Lett. A 372, 37143718 (2008).CrossRefGoogle Scholar
Ikkala, O.T., Laakso, J., Vakiparta, K., Virtanen, E., Ruohonen, H., Jarvinen, H., Taka, T., Passiniemi, P., and Osterholm, J.: Counter-ion induced processibility of polyaniline: Conducting melt processible polymer blends. Synth. Met. 69, 97100 (1995).CrossRefGoogle Scholar
Pud, A., Ogurtsov, N., Korzhenko, A., and Shapoval, G.: Some aspects of preparation methods and properties of polyaniline blends and composites with organic polymers. Prog. Polym. Sci. 28, 17011753 (2003).CrossRefGoogle Scholar
Kremer, F. and Schonhals, A.: Broadband Dielectric Spectroscopy (Springer Verlag, Berlin, Germany, 2003).CrossRefGoogle Scholar