Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T05:55:08.834Z Has data issue: false hasContentIssue false

Photovoltaic silicon produced by thermal plasma: Influence of atomic hydrogen on oxygen elimination and passivation of the crystal defects

Published online by Cambridge University Press:  31 January 2011

D. Morvan
Affiliation:
Laboratoire des réacteurs chimiques en phase plasma, Université P&M Curie, ENSCP, 11 rue P&M Curie, 75005 Paris, France
I. Cazard-Juvernat
Affiliation:
Laboratoire des réacteurs chimiques en phase plasma, Université P&M Curie, ENSCP, 11 rue P&M Curie, 75005 Paris, France
J. Amouroux
Affiliation:
Laboratoire des réacteurs chimiques en phase plasma, Université P&M Curie, ENSCP, 11 rue P&M Curie, 75005 Paris, France
Get access

Abstract

The photovoltaic properties of the polycrystalline silicon depend on the crystallinity and the purity of the material. The thermal plasma process gives us an alternative method of silicon preparation since it is possible to produce an ultrahigh purity with simultaneously a passivation of crystalline defects and active impurities. We demonstrate the efficiency of the plasma purification process and particularly the influence of the atomic hydrogen in an argon thermal plasma on the photovoltaic properties of silicon. The results of the diffusion lengths measured by the photoelectrochemical method show that locally it rises up to 200 μm. We correlate these photovoltaic measurements with the properties of the crystal (defects and purity) by means of measurements by Fourier transform infrared spectroscopy (FTIR) at low temperature (6 K), four probes resistivity technique, scanning electronic microscopy, inductively coupled plasma (ICP), and neutronic activation analyses. We show that the increase of the purity explains the high me asured diffusion lengths. Nevertheless, the thermal conditions of the crystallization of the silicon, due to the specificity of the plasma, lead to defects such as dislocations for which density is particularly high (>106 dis/cm2). The results show that chemical reactions between the atomic hydrogen of the plasma and the oxygen of the silicon occur. They decrease the oxygen content in silicon from 3 × 1017 at./cm3 down to 2 × 1016 at./cm3, while the residual hydrogen in silicon is close to 2 × 1015 at./cm3. This passivates the dangling bonds of ultrapure silicon with a high thermal stability up to 1000 K. The objective of this paper is to demonstrate that the hydrogen in the plasma modifies the electronic properties of the material to achieve a very good photocurrent even though the dislocation density of the silicon is very high.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Erin, J., Morvan, D., and Amouroux, J., J. Phys. III France 3, 633652 (1993).Google Scholar
2.Morvan, D., Slootman, F., Madigou, N., and Amouroux, J., Ann. Chim. France 11, 589602 (1986).Google Scholar
3.Malbranche, P. and Lay, P. (Photowatt), Rencontres et journées techniques, ADEME, Sophia Antipolis, pp. 185193, November 25–26, 1992.Google Scholar
4.Baba, H., Hanazawa, K., Yuge, N., Sakaguchi, Y., Terashima, H., and Aratani, F., 13th European Photovoltaic Solar Energy Conference and Exhibition, Nice, France, October 23–27, 1995, pp. 390394.Google Scholar
5.Ikeda, T. and Maeda, M., 13th European Photovoltaic Solar Energy Conference and Exhibition, Nice, France, October 23–27, 1995, pp. 454457.Google Scholar
6.Perichaud, I., Dour, G., Durand, F., Sarti, D., Goaer, G., Le, Q. N., Floret, F., and Martinuzzi, S., 13th European Photovoltaic Solar Energy Conference and Exhibition, Nice, France, October 23–27, 1995, pp. 13771381.Google Scholar
7.Kaneko, K., Kawamura, R., Mizumoto, H., and Misawa, T., 11th European Photovoltaic Solar Energy Conference, Montreux, Switzerland, October 12–16, 1992, pp. 10701073.Google Scholar
8. Crystalox News, Oxfordshire, England, 11th European Photovoltaic Solar Energy Conference, Montreux, Switzerland, October 12–16, 1992.Google Scholar
9. Landolt–Börnstein, Semiconductors: Technology of Si, Ge, and SiC. Numerical Data and Functional Relationships in Science and Technology, New Series, edited by Hellwege, K. H. and Madelung, O., Group III (1984), Vol. 17, p. 31.Google Scholar
10.Cazard-Juvernat, I., Morvan, D., Francke, E., and Amouroux, J., Rencontres et journées techniques ADEME, Sophia Antipolis, November 16–17, 1994, pp. 5975.Google Scholar
11.Cazard-Juvernat, I., Morvan, D., Francke, E., and Amouroux, J., Rencontres et journées techniques ADEME, Sophia Antipolis, November 29–30, 1995.Google Scholar
12.Bastide, S., Vedel, J., Lincot, D., Le, Q. N., and Sarti, D., J. Electrochem. Soc. 142 (3), 10241030 (1995).CrossRefGoogle Scholar
13.Pateyron, B., Delluc, G., Elchinger, M. F., and Fauchais, P., High Temperature Chem. Processes, sup. au no. 3, vol. 1, pp. 326332, 1992.Google Scholar
14.Pateyron, B., Elchinger, M. F., Delluc, G., and Fauchais, P., Bilan ARC Réacteurs Plasmas en phase hétérogène, CNRS-PIRSEM, pp. 143, November 1991.Google Scholar
15.Reboux, J., Delage, D., and Riguet, C., Revue générale de thermique, No. 310, October 1987, pp. 534541.Google Scholar
16.Leroy, B., Technical Report, DPT. 1817, IBM-France (Essone), TR 49 274 (1986).Google Scholar
17.Yatsurugi, Y., Akiyama, N., Endo, Y., and Nazaki, T., J. Electrochem. Soc. 120 (7), 975978 (1973).CrossRefGoogle Scholar
18.Leroy, B., Instabilities in Silicon Devices, edited by Barbottin, G. and Vapaille, A. (Elsevier Science Publishers B.V., North-Holland, 1986), Chap. 3.Google Scholar
19.Erramli, H., Thèse de Doctoratès Sciences de l'Université Cadi Ayyad, Faculté des Sciences, Marrakech, January 20, 1995.Google Scholar
20.Cid, M. and Ruiz, J. M., 9th Photovoltaic Solar Energy Conference, Freiburg, Germany, September 25–29, 1989, pp. 687689.Google Scholar
21.Maddalon-Vinante, C., Barbier, D., Erramli, H., and Blondiaux, G., J. Appl. Phys. 74 (10), 61156119 (1993).CrossRefGoogle Scholar
22.Pearton, S. J., Stavola, M., and Corbett, J. W., States of Hydrogen in Crystalline Semiconductors. Radiation Effects and Defects in Solids (1989), Vol. 111–112 (1–2), p. 323.Google Scholar
23.Pearton, S. J., Corbett, J. W., and Shi, T. S., Appl. Phys. A 43, 153195 (1987).CrossRefGoogle Scholar
24.Hara, A., Jpn. J. Appl. Phys. 34, Part 1, No. 10, 5483–5488 (1995).Google Scholar
25.Abdelhamid, C., Thèse de l'Université de Paris-Sud, Centre d'Orsay, September 28, 1988.Google Scholar
26.Nozaki, T., Yatsurugi, Y., Akiyama, N., Endo, Y., and Makide, Y., J. Radioanal. Chem. 19, 109128 (1974).CrossRefGoogle Scholar
27.Maddalon-Vinante, C., Vallard, J. P., and Barbier, D., J. Electrochem. Soc. 142 (2), 560564 (1995).CrossRefGoogle Scholar
28.Schwartz, P. V. and Sturm, J. C., J. Electrochem. Soc. 141 (5), 12841290 (1994).CrossRefGoogle Scholar
29.Pointexter, E. H., Gerardi, G. J., and Keeble, D. J., 3rd Int. Symp. Physics and Chemistry of SiO2 and the Si–SiO2 interface-3, edited by Massoud, H. Z., Pointexter, E. H., and Helms, C. R., Proc. 96–1 (The Electrochem. Soc., Pennington, NJ, 1996), pp. 172183.Google Scholar
30.Krauser, J., Weidinger, A., and Bräunig, D., 3rd Int. Symp. Physics and Chemistry of SiO2 and the Si–SiO2 interface-3, edited by Massoud, H. Z., Pointexter, E. H., and Helms, C. R., Proc. 96–1 (The Electrochem. Soc., Pennington, NJ, 1996), pp. 184195.Google Scholar
31.Kronenberg, A. K., 3rd Int. Symp. Physics and Chemistry of SiO2 and the Si–SiO2 interface-3, edited by Massoud, H. Z., Pointexter, E. H., and Helms, C. R., Proc. 96–1 (The Electrochem. Soc., Pennington, NJ, 1996), pp. 163171.Google Scholar
32.Durand, F., Rencontres et journées techniques ADEME, Sophia Antipolis, October 27–28, 1993, pp. 97108.Google Scholar
33.Cazard-Juvernat, I., Morvan, D., and Amouroux, J., 13th European Photovoltaic Solar Energy Conference and Exhibition, Nice, France, October 23–27, 1995, pp. 24512454.Google Scholar
34.Cazcarra, V., Inst. Phys. Conf. Ser. 46, Chap. 3, 303–310 (1979).Google Scholar
35.Cazard-Juvernat, I., Erin, J., Morvan, D., and Amouroux, J., Proc. 3rd European Congress on Thermal Plasma Processes, Aachen, Germany, September 19–21, 1994.Google Scholar
36.Cazard-Juvernat, I., Erin, J., Morvan, D., and Amouroux, J., 12th European Photovoltaic Solar Energy Conference and Exhibition, Amsterdam, The Netherlands, April 11–15, 1994, pp. 961964.Google Scholar
37.Mahfoud, K., Loghmarti, M., Muller, J. C., and Siffert, P., J. Phys. III France 5, 13451351 (1995).Google Scholar
38.Martinuzzi, S. and Räuber, A., 9th Photovoltaic Solar Energy Conference, Freiburg, Germany, September 25–29, 1989, pp. 38.Google Scholar
39.Ballutaud, D., de Mierry, P., Pesant, J. C., Rizk, R., Boutry-Forveille, A., and Aucouturier, M., Phys. Rev. Mat. Sci. Forum 83–87, 4550 (1992).CrossRefGoogle Scholar
40.Ammor, L., Ghitani, H. el, Savary, S., and Martinnuzzi, S., 7th Photovoltaic Solar Energy Conference, Sevilla, Spain, October 27–31, 1986, pp. 860864.CrossRefGoogle Scholar
41.Lusson, L., Eklaim, P., Correia, A., and Balluteau, D., Solid State Phenomena 37–38, 373378 (1994).CrossRefGoogle Scholar
42.Myers, S. M., Bishop, D. M., Follstaedt, D. M., Stein, H. J., and Wampler, W. R., in Microcrystalline Semiconductors: Materials Science and Devices, edited by Fauchet, P. M., Tsai, C. C., Canham, L. T., Shimizu, I., and Aoyagi, Y. (Mater. Res. Soc. Symp. Proc. 283, Pittsburgh, PA, 1993), pp. 549554.Google Scholar
43.Medernach, J. W., Hill, T. A., Myers, S. M., and Headley, T. J., J. Electrochem. Soc. 143 (2), 725735 (1996).CrossRefGoogle Scholar
44.Martinuzzi, S. and Oualid, J., Séminaire de Contractants, AFME, Sophia Antipolis, November 17–18, 1983, pp. 209245.Google Scholar
45.Morvan, D., Combes, R., Erin, J., Cazard, I., Amouroux, J., Bastide, S., Lincot, D., Vedel, J., and Foulon, N., Proceedings of 11th European Photovoltäic Solar Energy Conference and Exhibition, Montreux, Switzerland, October 12–16, 1992, pp. 453457.Google Scholar
46.Morvan, D., Amouroux, J., Perrais, C., Humbert-Droz, C., and Henri, Y., High Temp. Chem. Processes 1 (3), 300307 (1992).Google Scholar
47.Morvan, D., Erin, J., Magnaval, S., Amouroux, J., Dresvin, S., and Nguen-Kuok, S., IUPAC 12th International Symposium on Plasma Chemistry, Minneapolis, MN (1995), Vol. 3, pp. 17431748.Google Scholar