Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-07-07T02:56:47.087Z Has data issue: false hasContentIssue false

Phase-formation kinetics of xerogel and electrical properties of sol-gel-derived BaxSr1−xTiO3 thin films

Published online by Cambridge University Press:  31 January 2011

Soo-Ik Jang
Affiliation:
Department of Materials Science and Engineering, and Laboratory for Physical Chemistry of Dielectric Materials, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
Byung-Cheul Choi
Affiliation:
Department of Materials Science and Engineering, and Laboratory for Physical Chemistry of Dielectric Materials, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
Hyun M. Jang*
Affiliation:
Department of Materials Science and Engineering, and Laboratory for Physical Chemistry of Dielectric Materials, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
*
a)Author to whom correspondence should be addressed.
Get access

Abstract

Chemically homogeneous BaxSr1−xTiO3 (BST with x = 0.6) multicomponent sol was synthesized using barium oxide, strontium chloride, and Ti-alkoxide (titanium isopropoxide) as starting materials. Acetylacetone (AcAc) was introduced as a chelating agent to reduce a rapid hydrolysis rate of Ti-alkoxide. Analysis of Fourier transform infrared spectroscopy (FTIR) spectra indicated that the stabilization of BST sols was achieved by the chelation of Ti-alkoxide with the enolic form of AcAc. The effective activation energy associated with the formation of perovskite phase from the xerogel was estimated by the differential thermal analysis (DTA) experiment using various heating rates. It is approximately 400 kJ/mol with the Avrami exponent (reaction order) of n = 1, suggesting that the growth of perovskite BST is diffusion-controlled. The calculated half-life time suggests that the minimum temperature for the crystallization which is practically accessible to a real processing is approximately 600 °C. The BST thin film fabricated on the “Pt(150 nm)/Ti(100 nm)/SiO2(100 nm)/Si” substrate exhibited the relative dielectric permittivity of 310 and can be represented by an equivalent circuit consisting of a resistive component originated from the bulk perovskite grain and a parallel RC component resulting from the presence of the grain boundary.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Carrano, J., Sudhama, C., Lee, J. C., Tasch, A. F., and Miller, W., IEDM Tech. Dig. 1989, 255 (1989).Google Scholar
2.Sheppard, L. M., Ceram. Bull. 71, 85 (1992).Google Scholar
3.Parker, L. H. and Tasch, A. H., IEEE Circuit Device Mag., January, 17 (1990).CrossRefGoogle Scholar
4.Yamamichi, S., Sakuma, T., Takamura, K., and Miyasaka, Y., Jpn. J. Appl. Phys. 30 (9B), 2193 (1991).CrossRefGoogle Scholar
5.Dey, S. K. and Lee, J. J., IEEE Trans. Electronic Devices ED-39, 1607 (1992).CrossRefGoogle Scholar
6.Abe, A. K. and Komatsu, S., Jpn. J. Appl. Phys. 33 (9B), 5297 (1994).Google Scholar
7.Scott, J. F., Azuma, M., Jujii, E., Otsuki, T., Kano, G., Scott, M. C., Paz de Araujo, C. A., McMillan, L. D., and Roberts, T., Proc. Eighth IEEE Int. Symp. on Applications of Ferroelectrics, edited by Liu, M., Safari, A., Kingon, A., and Haertling, G. (IEEE, Inc., Piscataway, NJ, 1992), pp. 356359.CrossRefGoogle Scholar
8.Roy, D. and Krupanidhi, S. B., Appl. Phys. Lett. 62 (10), 1056 (1993).CrossRefGoogle Scholar
9.Sigov, A. S. and Vorotilov, K. A., J. Sol-Gel Sci. Technol. 2, 256 (1994).CrossRefGoogle Scholar
10.Pavia, D. L., Lampman, G. M., and Kriz, G. S., Introduction to Spectroscopy (W. B. Saunders Co., Philadelphia, London, Toronto, 1979), Chap. 2.Google Scholar
11.Solomons, T. W. Graham, Organic Chemistry, 5th ed. (John Wiley and Sons, Inc., New York, 1992), Chap. 17.Google Scholar
12.Hesse, M., Meier, H., and Zeeh, B., Spektroskopische Methoden in der Organischen Chemie, 2nd ed. (Thieme, 1984).Google Scholar
13.Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th ed. (John Wiley and Sons, Inc., New York, 1986), pp. 259268.Google Scholar
14.Kissinger, H. E., Anal. Chem. 29 (11), 1702 (1957).CrossRefGoogle Scholar
15.Raghaven, V. and Cohen, M., in Treatise on Solid State Chemistry, edited by Hannay, N. B. (Plenum Press, New York, 1982), Vol. 5, Chap. 2.Google Scholar
16.Marotta, A. and Buri, A., Thermochim. Acta 25, 155 (1978).CrossRefGoogle Scholar
17.Hwang, C. S., Park, S. O., Cho, H. J., Kang, C. S., Kang, H. K., Lee, S. I., and Lee, M. Y., Appl. Phys. Lett. 67 (19), 6 (1995).Google Scholar
18.Schwartz, R. W. and Payne, D. A., in Better Ceramics through Chemistry III, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 121, Pittsburgh, PA, 1988), pp. 199206.Google Scholar
19.Chen, K. C., Janah, A., and Mackenzie, J. D., in Better Ceramics through Chemistry II, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 73, Pittsburgh, PA, 1986), pp. 731736.Google Scholar
20.Cullity, B. D., Elements of X-ray Diffraction, 2nd ed. (Addison-Wesley Pub. Co., New York, 1978), Chap. 3.Google Scholar
21.Kawahara, T., Yamamura, M., Makita, T., Naka, J., Yuuki, A., Mikami, N., and Ono, K., Jpn. J. Appl. Phys. 33 (9B), 5129 (1994).CrossRefGoogle Scholar
22.Catalan, A. B., Mantese, J. V., Micheli, A. L., Schubring, N. W., and Poisson, R. J., J. Appl. Phys. 76 (4), 2541 (1994).CrossRefGoogle Scholar
23.Peng, C-J. and Krupanidhi, S. B., J. Mater. Res. 10, 708 (1995).CrossRefGoogle Scholar
24.Macdonald, J. R., Impedance Spectroscopy (John Wiley and Sons, Inc., New York, 1987).Google Scholar
25.Maiti, H. S. and Basu, R. N., Mater. Res. Bull. 21 (9), 1107 (1986).CrossRefGoogle Scholar