Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T22:51:41.528Z Has data issue: false hasContentIssue false

Phase separation in gel-derived materials, separation and crystallization of SnO2 within an amorphous SiO2 matrix

Published online by Cambridge University Press:  31 January 2011

R. Dal Maschio
Affiliation:
Department of Materials Engineering, University of Trento, 38050 Mesiano di Povo, Trento, Italy
S. Dirè
Affiliation:
Department of Materials Engineering, University of Trento, 38050 Mesiano di Povo, Trento, Italy
G. Carturan
Affiliation:
Department of Materials Engineering, University of Trento, 38050 Mesiano di Povo, Trento, Italy
S. Enzo
Affiliation:
Department of Physical Chemistry, University of Venice, Calle Larga, S. Marta 2137, 30100 Venice, Italy
L. Battezzati
Affiliation:
Department of Inorganic, Physical and Materials Chemistry, University of Torino, Via P. Giuria 9, 10125 Torino, Italy
Get access

Abstract

On heating a gel of composition 33.5SnO2−66.5SiO2 (wt. %) up to 1050 °C, SnO2 crystallization occurred with different mechanisms according to thermal treatments. Thermal analysis, SAXS (Small Angle X-Ray Scattering), WAXS (Wide Angle X-Ray Scattering), and TEM (Transmission Electron Microscopy) results obtained for samples treated at different temperatures demonstrated that the SnO2 load is divided into two moieties, one composed of isolated SnO2 particles suitable for primary crystallization yielding crystallites with 4.0 nm of average size; the other, being dissolved in SiO2, remains in the amorphous SiO2/SnO2 solid solution up to the highest temperature. The presence of these two phases accounts for SnO2 surface segregation at the expense of the SnO2 concentration of neighboring outer layers and the independence of apparent density on temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ulrich, D. R., J. Non-Cryst. Solids 100, 174 (1988).CrossRefGoogle Scholar
2.Roy, R., Science 238, 1664 (1987).CrossRefGoogle Scholar
3.Gottardi, V., Guglielmi, M., Tiziani, A., and Carturan, G., J. Non-Cryst. Solids 43, 105 (1981); H. Pentinghaus, J. Non-Cryst. Solids 63, 193 (1984); J. Livage, in Better Ceramics through Chemistry, edited by C. J. Brinker, D. E. Clark, and D. R. Ulrich (Mater. Res. Soc. Symp. Proc. 32, Pittsburgh, PA, 1986), pp. 717–724.CrossRefGoogle Scholar
4.Brinker, C. J. and Scherer, G., Sol-Gel Science (Academic Press, San Diego, CA, 1990), Chaps. 3, 5, and 11.Google Scholar
5.Brinker, C. J. and Scherer, G. W., in Ultrastructure Processing of Ceramics, Glasses and Composites, edited by Hench, L. L. and Ulrich, D. R. (Wiley-Interscience, New York, 1984), pp. 4359.Google Scholar
6.Pope, A. J. A. and Mackenzie, J. D., J. Non-Cryst. Solids 87, 185 (1986).CrossRefGoogle Scholar
7.Livage, J., Henry, M., and Sanchez, C., Prog. Solid State Chem 18, 259 (1988).CrossRefGoogle Scholar
8.Mehrotra, R. C. and Bohra, R., Metal Carboxylates (Academic Press, London, 1983); B. E. Yoldas, Am. Ceram. Soc. Bull. 54, 289 (1975); W. C. LaCourse, in Sol-Gel Technology for Thin Films, Fibers, Preforms, Electronics and Specialty Shapes, edited by Lisa C. Klein (Noges, New Jersey, 1988), Chap. 7, pp. 140–161.Google Scholar
9. a. Prassas, M., Hench, L. L., Phalippou, J., and Zarzycki, J., J. Non-Gyst. Solids 48, 79 (1982); b. U. Brenna, G. Carturan, R. Ceccato, and M. Mozzon, 4th Infrastructure Conference, Tucson, AZ, 1989 (J. Wiley and Sons, New York, in press).CrossRefGoogle Scholar
10.Vonk, C. G., J. Appl. Cryst. 9, 433 (1976).CrossRefGoogle Scholar
11.Cocco, G., Schiffini, L., Strukul, G., and Carturan, G., J. Catal. 65, 348 (1980).CrossRefGoogle Scholar
12.Enzo, S., Benedetti, A., and Polizzi, S., Z. Kristall. 170, 275 (1985).CrossRefGoogle Scholar
13.Enzo, S., Fagherazzi, G., Benedetti, A., and Polizzi, S., J. Appl. Cryst. 21, 536 (1988).CrossRefGoogle Scholar
14.Maschio, R. Dal, Dirè, S., Campostrini, R., Sorarù, G. D., and Carturan, G., in Better Ceramics Through Chemistry IV, edited by Zelinski, B. J. J., Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 180, Pittsburgh, PA, 1990).Google Scholar
15.Carturan, G., Gottardi, V., and Graziani, M., J. Non-Cryst. Solids 29, 41 (1978).CrossRefGoogle Scholar
16.Kawaguchi, T., Hishikura, H., and lura, J., J. Non-Cryst. Solids 100, 220 (1988).CrossRefGoogle Scholar
17.Tohge, N., Moore, G. S., and Mackenzie, J. D., J. Non-Cryst. Solids 63. 95 (1984).CrossRefGoogle Scholar
18.Sakka, S., Kozuka, H., and Kim, S., in JJltrastructure Processing of Advanced Ceramics, edited by Mackenzie, J. D. and Ulrich, D. R. (Wiley-Interscience, New York, 1988), pp. 159171.Google Scholar
19.Schmidt, H., J. Non-Cryst. Solids 100, 51 (1988).CrossRefGoogle Scholar
20.Gallezot, P. and Bergeret, G., J. Catal. 72, 294 (1981).CrossRefGoogle Scholar
21.Cocco, G., Enzo, S., Carturan, G., Orsini, P. Giordano, and Scardi, P., Mat. Chem. and Phys. 17, 541 (1987).CrossRefGoogle Scholar
22.Osuka, T., Morikawa, H., Marumo, F., Tohji, K., Udagawa, Y., Yasumori, A., and Yamane, M., J. Non-Cryst. Solids 82, 154 (1986).CrossRefGoogle Scholar
23.Smith, W. L., J. Appl. Cryst. 9, 139 (1976).CrossRefGoogle Scholar
24.Young, R. A. and Sakthivel, A., J. Appl. Cryst. 21, 416 (1988).CrossRefGoogle Scholar
25.Craievich, A., Santos, D. I. dos, Aegerter, M., Lours, T., and Zarzycki, J., J. Non-Cryst. Solids 100, 424 (1988).CrossRefGoogle Scholar
26.Krol, D. M. and Van Lierop, J. G., J. Non-Cryst. Solids 63, 131 (1987); T. A. Gallo, C. J. Brinker, L. C. Klein, and G. W. Scherer, in Better Ceramics Through Chemistry, edited by C. J. Brinker, D. E. Clark, and D. R. Ulrich (Elsevier, North Holland, New York, 1984), pp. 85–90; C. J. Brinker, D. R. Tallant, E. P. Roth, and C. S. Ashley, J. Non-Cryst. Solids 82, 117 (1986); G. Mariotto, M. Montagna, G. Viliani, R. Campostrini, and G. Carturan, J. Phys. C: Solid State Phys. 21, L797 (1988).CrossRefGoogle Scholar
27.Zarzycki, J., in JJltrastructure Processing of Ceramics, Glasses and Composites, edited by Hench, L. L. and Ulrich, D. R. (Wiley- Interscience, New York, 1984), pp. 2742.Google Scholar
28.Salvado, I. M. Miranda, Serna, C. J., and Navarro, J. M. Fernandez, J. Non-Cryst. Solids 100, 330 (1988).CrossRefGoogle Scholar