Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-20T05:15:42.879Z Has data issue: false hasContentIssue false

Phase formation sequence induced by deposition temperatures in Nb/Si multilayers

Published online by Cambridge University Press:  31 January 2011

Ming Zhang
Affiliation:
Department of Mechanic Engineering, Tsinghua University, Beijing 100083 and Institute of Physics, Academy of Sciences, 100080, China
W. K. Wang
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080China
Get access

Abstract

The phase formation sequence in Nb/Si multilayers formed at different deposition temperatures was investigated by x-ray diffraction (XRD) and transmission electron microscopy (TEM). The amorphous phases were found to form in Nb/Si multilayers deposited at room temperature and 560 °C, but the compositions of these two amorphous phases were different. The crystalline Nb3Si and Nb5Si3 were formed in Nb/Si multilayers deposited at 180–500 °C. The interfacial energy and modified heat of formation are adopted to explain our obtained results. The occurrence of crystalline Nb5Si3, NbSi2, and amorphous silicide phase was found when the Nb/Si multilayers with Nb3Si phase were annealed at 550 °C, while only NbSi2 was found to form when annealing this sample at 700 °C. The mobility of Si takes an important role in phase formation in Nb/Si multilayers.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ronay, M., Appl. Phys. Lett. 42, 577 (1983).CrossRefGoogle Scholar
2.Abelson, J. R., Kim, K. B., Mercer, D. E., Helms, C. R., Sinclair, R., and Sigmon, W., J. Appl. Phys. 63, 689 (1988).CrossRefGoogle Scholar
3.Lur, W. and Chen, L. J., Appl. Phys. Lett. 54, 1217 (1989).CrossRefGoogle Scholar
4.Lee, T. L. and Chen, L. J., J. Appl. Phys. 73, 8258 (1993).CrossRefGoogle Scholar
5.Wang, W. H. and Wang, W. K., J. Appl. Phys. 76 (3), 1578 (1994).CrossRefGoogle Scholar
6.Bene, R., J. Appl. Phys. 61 (5), 1826 (1987).CrossRefGoogle Scholar
7.d'Heurle, F. M. and Gas, P., J. Mater. Res. 1, 205 (1986).CrossRefGoogle Scholar
8.Gosele, U. and Tu, K. N., J. Appl. Phys. 66, 2612 (1989).CrossRefGoogle Scholar
9.Gong, S. F. and Hentzell, H. T., J. Appl. Phys. 68 (9), 4542 (1990).CrossRefGoogle Scholar
10.Fullerton, E. E., Pearson, J., Sowers, C. H., and Bader, S. D., Phys. Rev. B 48, 17 432 (1993).CrossRefGoogle Scholar
11.Baribeau, J-M., Lockwood, D. J., and Syme, R. W. G., J. Appl. Phys. 83 (3), 1450 (1996).CrossRefGoogle Scholar
12.Parkin, S. S. and York, B. R., Appl. Phys. Lett. 62 (15), 1842 (1993).CrossRefGoogle Scholar
13.Wang, W. H. and Wang, W. K., J. Mater. Res. 9, 401 (1994).CrossRefGoogle Scholar
14.Wang, W. H. and Wang, W. K., J. Appl. Phys. 76 (3), 1578 (1994).CrossRefGoogle Scholar
15.Lee, T. L. and Chen, L. J., J. Appl. Phys. 75 (4), 2007 (1994).CrossRefGoogle Scholar
16.Cheng, J. Y. and Chen, L. J., J. Appl. Phys. 69 (4), 2161 (1991).CrossRefGoogle Scholar
17.Tu, K. N. and Mayer, J. W., in Thin Films, Interdiffusion and Reactions, edited by Poate, J. M., Tu, K. N., and Mayer, J. W. (Wiley, New York, 1978).Google Scholar
18.Nicolet, M. A. and Lau, S. S., in VLSI Electronic, Microstructure Science, edited by Einapruch, N. G. and Larrabee, G. B. (Academic Press, New York, 1983).Google Scholar
19.d'Heurle, F. M., J. Mater. Res. 3, 167 (1988).CrossRefGoogle Scholar
20.Zhang, L. and Ivey, D. G., J. Appl. Phys. 71, 4314 (1992).CrossRefGoogle Scholar
21.Wang, M. H. and Chen, L. J., Appl. Phys. Lett. 58, 463 (1991).CrossRefGoogle Scholar
22.Hsieh, W. Y., Lin, J. H., and Chen, L. J., Appl. Phys. Lett. 62, 1088 (1993).CrossRefGoogle Scholar
23.Liang, W. Y. and Chen, L. J., Appl. Phys. Lett. 64, 1224 (1994).CrossRefGoogle Scholar
24.Nakanishi, T., Takeyama, M., and Noya, A., J. Appl. Phys. 77 (2), 948 (1995).CrossRefGoogle Scholar
25.Walser, R. M. and Bene, R. W., Appl. Phys. Lett. 28, 624 (1976).CrossRefGoogle Scholar
26.d'Heurle, F. M., J. Mater. Res. 1, 205 (1986).CrossRefGoogle Scholar
27.Bene, R. W., J. Appl. Phys. 61, 1826 (1987).CrossRefGoogle Scholar
28.Gosele, U. and Tu, K. N., J. Appl. Phys. 53, 3252 (1992).CrossRefGoogle Scholar
29.Pretorius, R., Vacuum 41, 1038 (1990).CrossRefGoogle Scholar
30.Pretorius, R., Vredenberg, A. M., and Saris, F. W., J. Appl. Phys. 70 (7), 3636 (1991).CrossRefGoogle Scholar
31.Mishima, Y., Takei, M., Uematsu, T., Matsumoto, N., Kakehi, T., Wakino, U., and Okabe, M., J. Appl. Phys. 78 (1), 217.CrossRefGoogle Scholar
32.Bene, R. W., J. Appl. Phys. 61, 1826 (1987).CrossRefGoogle Scholar
33.Spaepen, Frans, Acta Metall. 23, 729 (1975).CrossRefGoogle Scholar
34.Miller, W. A. and Chadwick, G. A., Acta Metall. 15, 609 (1967).Google Scholar
35.Inman, M. C. and Tipler, H. R., Metall. Rev. 8, 105 (1963).Google Scholar
36.Baglin, J. E. E., d'Heurle, F. M., Hammer, W. N., and Petersson, S., Nucl. Instrum. Methods 168, 491 (1980).CrossRefGoogle Scholar
37.Boer, F. R., Room, R., Miedema, A. R., and Niessen, A. K., Cohesion in Metals (North-Holland, Amsterdam, 1988).Google Scholar
38.Pretorius, R., R. de Reus, Vredenberg, A. M., and Saria, F. W., J. Appl. Phys. 70, 3636 (1991).CrossRefGoogle Scholar