Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-15T23:40:56.063Z Has data issue: false hasContentIssue false

Pb()O3-type Perovskites: Part II. Short-range Order Parameter as a Criterion of the Distinction Between Relaxor and Normal Ferroelectrics

Published online by Cambridge University Press:  26 July 2012

Su-Chan Kim
Affiliation:
Department of Materials Science and Engineering, and Laboratory for Physics/Chemistry of Dielectric Materials, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
Hyun M. Jang*
Affiliation:
Department of Materials Science and Engineering, and Laboratory for Physics/Chemistry of Dielectric Materials, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
*
a)Author to whom correspondence should be addressed.
Get access

Abstract

A classification scheme of Pb()O3-type perovskites with respect to the B-site order parameters was proposed based on the theoretical calculation of the short-range order parameter (σ) using the pair-correlation model. The calculated order parameters predict that a Pb()O3-type perovskite without any charge difference between B′ and B″ cations [e.g., Pb(Zr1/2Ti1/2)O3 (PZT)] is represented by a completely disordered state with the absence of a finite coherence length. On the other hand, a Pb()O3-type perovskite system having different ionic charges is characterized either by the short-range ordering with a nanoscale coherence length or by the macroscopic long-range ordering, depending on the magnitude of ionic charge difference between B′ and B″ ions. The normal ferroelectricity in Pb()O3-type complex perovskites was then correlated either with a completely disordered state (σ = 0) or with a perfectly ordered state (σ = 0), whereas the relaxor behavior was attributed to the nanoscale short-range ordering (0 < σ < 1) in the configuration of the B-site cations.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Jang, H. M. and Kim, S-C., J. Mater. Res. 12, 21172126 (1997).CrossRefGoogle Scholar
2.Stenger, C. G. F., Scholten, F. L., and Burggraaf, A. J., Solid State Commun. 32, 989 (1979).CrossRefGoogle Scholar
3.Setter, N. and Cross, L. E., J. Mater. Sci. 15, 2478 (1980).CrossRefGoogle Scholar
4.Setter, N. and Cross, L. E., J. Appl. Phys. 51, 4356 (1980).CrossRefGoogle Scholar
5.Stenger, C. G. F. and Burggraaf, A. J., Phys. Status Solidi (a) 61, 275 (1980).CrossRefGoogle Scholar
6.Stenger, C. G. F. and Burggraaf, A. J., Phys. Status Solidi (a) 61, 653 (1980).CrossRefGoogle Scholar
7.Caranoni, C., Lampin, P., Siny, I., Zheng, J. G., Li, Q., Kang, Z. C., and Boulesteix, C., Phys. Status Solidi (a) 130, 25 (1992).CrossRefGoogle Scholar
8. Landolt–Börnstein, Numerical Data and Functional Relationships in Science and Technology, New Series, Group III: Crystal and Solid State Physics, Vol. 16, Ferroelectric and Related Substances, Subvolume a: Oxides, edited by K-H., Hellwege and Hellwege, A. M. (Springer-Verlag, Berlin, Heidelberg, New York, 1981).Google Scholar
9.Chen, J., Chan, H. M., and Harmer, M. P., J. Am. Ceram. Soc. 72, 593 (1989).CrossRefGoogle Scholar
10.Harmer, M. P., Chen, J., Peng, P., Chan, H. M., and Smyth, D. M., Ferroelectrics 97, 263 (1989).CrossRefGoogle Scholar
11.Hilton, A. D., Barber, D. J., Randall, C. A., and Shrout, T. R., J. Mater. Sci. 25, 3461 (1990).CrossRefGoogle Scholar
12.Hilton, A. D., Randall, C. A., Barber, D. J., and Shrout, T. R., Ferroelectrics 93, 379 (1989).CrossRefGoogle Scholar
13.Randall, C. A., Markgraf, S. A., and Bhalla, A. S., Phys. Rev. B 40, 413 (1989).CrossRefGoogle Scholar
14.Randall, C. A., Barber, D. J., Whatmore, R. W., and Groves, P., J. Mater. Sci. 21, 4456 (1986).CrossRefGoogle Scholar
15.Randall, C. A., Barber, D. J., Groves, P., and Whatmore, R. W., J. Mater. Sci. 23, 3678 (1988).CrossRefGoogle Scholar
16.Baba-Kishi, K. Z., Cressey, G., and Cernik, R. J., J. Appl. Crystallogr. 25, 477 (1992).CrossRefGoogle Scholar
17.Randall, C. A., Bhalla, A. S., Shrout, T. R., and Cross, L. E., J. Mater. Res. 5, 829 (1990).CrossRefGoogle Scholar
18.Randall, C. A. and Bhalla, A. S., Jpn. J. Appl. Phys. 29, 327 (1990).CrossRefGoogle Scholar
19.Cudek, J. and Wrobel, Z., Ferroelectrics 18, 161 (1978).Google Scholar
20.Uchino, K., Kuwata, J., Nomura, S., Cross, L. E., and Newnham, R. E., Jpn. J. Appl. Phys. 20, Suppl. 20–4, 171 (1981).CrossRefGoogle Scholar
21.Furuya, M., Mori, T., and Ochi, A., J. Appl. Phys. 75, 4144 (1994).CrossRefGoogle Scholar