Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-11T22:25:31.969Z Has data issue: false hasContentIssue false

Patterning of copper particles on polymeric surface

Published online by Cambridge University Press:  31 January 2011

Arvind Sinha
Affiliation:
National Metallurgical Laboratory, Jamshedpur-831 007, India
Swapan Kumar Das
Affiliation:
National Metallurgical Laboratory, Jamshedpur-831 007, India
V. Rao
Affiliation:
National Metallurgical Laboratory, Jamshedpur-831 007, India
P. Ramachandrarao
Affiliation:
National Metallurgical Laboratory, Jamshedpur-831 007, India
Get access

Abstract

In situ synthesis of fine copper particles (>200 nm) has been carried out using borohydride reduction in preorganized gel of poly(vinyl alcohol). The copper ions were chelated by polymer matrix at room temperature thorough physical entrapment along with a weak chemical complexation. The process is akin to biomimetic route and demonstrates a high order of control over nucleation, growth, and morphologies as well as orientation of the end product. The organized arrays of copper sulfate precipitate and copper particles replicate the conformation of organic matrix and form patterned structures similar to one observed in stationary chemical waves.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Mann, S. and Ozin, G.A., Nature 382, 313 (1996).CrossRefGoogle Scholar
2.Mann, S., Burkett, S.L., Davis, S.A., Fowler, C.E., Mendelson, N.H., Sims, S.D., Walsh, D., and Whilton, N.T., Chem. Mater. 9, 2300 (1997).CrossRefGoogle Scholar
3.Baral, S. and Schoen, P.S., Chem. Mater. 5, 145 (1993).CrossRefGoogle Scholar
4.Archiband, D.D. and Mann, S., Nature 364, 430 (1993).CrossRefGoogle Scholar
5.Addadi, L. and Weiner, S., Angew. Chem., Int. Ed. Engl. 31, 153 (1992).CrossRefGoogle Scholar
6.Wang, S.B. and Mark, J.E., Polym. Bull. 17, 271 (1987).Google Scholar
7.Clavert, P.D. and Board, R.A., in Materials Synthesis Utilizing Biological Processes, edited by Rieke, P.C., Calvert, P.D., and Alper, M. (Mater. Res. Soc. Symp. Proc. 174, Pittsburgh, PA, 1990), p. 61.Google Scholar
8.Mann, S., Heywood, B.R., Rajam, S., and Birchall, J.D., Nature 334, 692 (1988).CrossRefGoogle Scholar
9.Baskaran, S., Song, L., Lin, J., Chen, Y., and Graff, G.L., J. Am. Ceram. Soc. 81, 401 (1988).CrossRefGoogle Scholar
10.Binaconi, A.P., Lin, J., and Strzelecke, A.R., Nature 349, 315 (1991).CrossRefGoogle Scholar
11.Dameron, C.T., Reese, R.N., Mehra, R.K., Kortan, A.R., Carroll, P.J., Steigerwald, M.L., Brus, L.E., and Wing, D.R., Nature 388, 596 (1989).CrossRefGoogle Scholar
12.Schnur, J.M., Price, R., Schoen, P., Yager, P., Calvert, J.M., Georeger, J., and Singh, A., Thin Solid Films 152, 181 (1987).CrossRefGoogle Scholar
13.Schnur, J.M., Science 262, 1669 (1993).CrossRefGoogle Scholar
14.Selinger, J.V. and Schnur, J.M., Phys. Rev. Letts. 71, 4091 (1993).CrossRefGoogle Scholar
15.Chappell, J.S. and Yager, P., J. Mater. Sci. Lett. 11, 633 (1992).Google Scholar
16.Burkett, S.L. and Mann, S., Chem. Commun. 321 (1996).CrossRefGoogle Scholar
17.Gulgun, M.A., Nguyen, M.H., and Kriven, W.M., J. Am. Ceram. Soc. 82, 556 (1999).CrossRefGoogle Scholar
18.Turing, A.M., Philos. Trans. R. Soc. London B 327, 37 (1952).Google Scholar
19.Ouyang, Q. and Swinney, H.L., Nature 352, 610 (1991).CrossRefGoogle Scholar
20.Yokoi, H., Kawata, S., and Iwaizumi, M., J. Am. Chem. Soc. 108, 3358 (1986).CrossRefGoogle Scholar
21.Calvert, P. and Rieke, P., Chem. Mater. 8, 1723 (1996).Google Scholar
22.Sinha, A., Das, S.K., Rao, V., and Ramachandrarao, P., J. Mater. Synth. Process, 7, 373 (1999).CrossRefGoogle Scholar