Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-07-06T02:39:24.724Z Has data issue: false hasContentIssue false

Passivation of nanocrystalline Al prepared by the gas phase condensation method: An x-ray photoelectron spectroscopy study

Published online by Cambridge University Press:  31 January 2011

J. C. Sánchez-López
Affiliation:
Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. de Sevilla), Centro de Investigaciones Cientificas “Isla de la Cartuja,” Avda. Américo Vespuccio, s/n. 41092 Sevilla, Spain
A. R. González-Elipe
Affiliation:
Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. de Sevilla), Centro de Investigaciones Cientificas “Isla de la Cartuja,” Avda. Américo Vespuccio, s/n. 41092 Sevilla, Spain
A. Fernández*
Affiliation:
Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. de Sevilla), Centro de Investigaciones Cientificas “Isla de la Cartuja,” Avda. Américo Vespuccio, s/n. 41092 Sevilla, Spain
*
a) Author to whom correspondence should be addressed.asuncion@cica.es
Get access

Abstract

Nanocrystalline aluminum powders have been prepared by the gas phase condensation method. Samples have been synthesized in a conventional preparation chamber for gas phase condensation and also in the pretreatment chamber of an XPS (x-ray photoelectron spectroscopy) spectrometer so that in situ studies of the passivation process of nanocrystalline aluminum can be performed. For the range of particle sizes (12–41 nm) studied in the present work, we found a universal behavior during passivation with oxygen of the nanocrystalline Al0. An Al2O3 overlayer of 4 nm, which protects the material from further oxidation, was obtained for all samples independently of the route of oxygen dosage. A careful analysis of the photoelectron parameters (binding energy and Auger parameters) for Al and O shows that in the early stages of passivation the alumina overlayer is so thin (<2.5 nm thickness) that the Al2O3 –Al interface induces an increase in the relaxation energy of the photoholes as compared to that of bulk alumina. Conclusions have been drawn about the best way to proceed during passivation of Al ultrafine particles before exposure to an air atmosphere.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gleiter, H., Nanostruc. Mater. 1, 1 (1992); R. W. Siegel, Nanostruc. Mater. 4, 121 (1994); H. Gleiter, Nanostruc. Mater. 6, 3 (1995).CrossRefGoogle Scholar
2.Uyeda, R., Prog. Mater. Sci. 35, 1 (1991).CrossRefGoogle Scholar
3.Sethi, S. A. and Thölen, A. R., Nanostruc. Mater. 2, 615 (1993).CrossRefGoogle Scholar
4.Li, Z., Hahn, H., and Siegel, R. W., Mater. Lett. 6, 342 (1988).CrossRefGoogle Scholar
5.Skandan, G., Foster, C. M., Frase, H., Ali, M. N., Parker, J. C., and Hahn, H., Nanostruc. Mater. 1, 313 (1992).CrossRefGoogle Scholar
6.Gangopadhyay, S., Hadjipanayis, G. C., Shah, S. I., Sorensen, C. M., Klabunde, K. J., Papaefthymiou, V., and Kostikas, A., J. Appl. Phys. 70, 5888 (1991).CrossRefGoogle Scholar
7.Gangopadhyay, S., Hadjipanayis, G. C., Sorensen, C. M., and Klabunde, K. J., Nanostruc. Mater. 1, 449 (1992).CrossRefGoogle Scholar
8.Du, Y. W., Xu, M. X., Wu, J., Shi, Y. B., and Lu, H. X., J. Appl. Phys. 70, 5903 (1991).CrossRefGoogle Scholar
9.Sánchez-López, J. C., Fernández, A., Conde, C. F., Conde, A., Morant, C., and Sanz, J. M., Nanostruc. Mater. 7, 813 (1996).CrossRefGoogle Scholar
10.Apte, P., Suits, B. H., and Siegel, R. W., Nanostruc. Mater. 9, 501 (1997).CrossRefGoogle Scholar
11.Suits, B. H., Apte, P., Wilken, D. E., and Siegel, R. W., Nanostruc. Mater. 6, 609 (1995).CrossRefGoogle Scholar
12.Eckert, J., Holzer, J. C., Ahn, C. C., Fu, Z., and Johnson, W. L., Nanostruc. Mater. 2, 407 (1993).CrossRefGoogle Scholar
13.Gleiter, H., Adv. Mater. 4, 474 (1992).CrossRefGoogle Scholar
14.Philibert, J., Defect and Diffusion Forum 59, 63 (1988).CrossRefGoogle Scholar
15.Cabrera, N. and Mott, N. F., Repts. Progress Phys. 12, 163 (1949).CrossRefGoogle Scholar
16.Shirley, D. A., Phys. Rev. B 5, 4709 (1972).CrossRefGoogle Scholar
17.Wagner, C. D., Faraday Discuss. Chem. Soc. 60, 291 (1975).CrossRefGoogle Scholar
18.Sheng, E. and Sutherland, I., Surf. Sci. 314, 325 (1994).CrossRefGoogle Scholar
19.Seah, M. P. and Dench, W. A., Surf. Int. Anal. 1, 1 (1979).Google Scholar
20.Fernández, A., Sánchez-López, J. C., Caballero, A., Martin, J. M., Vacher, B., and Ponsonnet, L. (unpublished).Google Scholar
21.Sun, X. K., Xu, J., Chen, W. X., and Wei, W. D., Nanostruc. Mater. 4, 337 (1994).CrossRefGoogle Scholar
22.Fernández, A., Espinós, J. P., Leinen, D., González-Elipe, A. R., and Sanz, J. M., Surf. Int. Anal. 22, 111 (1994).CrossRefGoogle Scholar
23.Thomas, T. D., J. Electron. Spectrosc. Relat. Phenom. 20, 117 (1980).CrossRefGoogle Scholar