Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T02:35:38.267Z Has data issue: false hasContentIssue false

The oxygen deficiency effect of VO2 thin films prepared by laser ablation

Published online by Cambridge University Press:  31 January 2011

M. Nagashima
Affiliation:
Second Research Center, TRDI, Japan Defense Agency, 1-2-24 Ikejiri, Setagaya, Tokyo, Japan
H. Wada
Affiliation:
Second Research Center, TRDI, Japan Defense Agency, 1-2-24 Ikejiri, Setagaya, Tokyo, Japan
Get access

Abstract

Vanadium dioxide thin films (VO2) have been deposited by laser ablation. The temperature dependence of resistivity and temperature coefficient of resistance (TCR) for each deposition condition were investigated. It was clarified that the TCR at room temperature (RT) can be optimized by controlling the oxygen pressure introduced during deposition as the deposition parameter. In the result, larger TCR's at RT were observed for the oxygen deficient condition of VO2 than for oxygen-richer samples. Obtained TCR values were 0.072/K and 0.045/K at 25°C for VO2 thin films deposited onto R-cut sapphire and SiO2/Si, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kosuge, K., J. Phys. Chem. Solids 28, 1613 (1967).CrossRefGoogle Scholar
2.DeNatale, J. F., Hood, P. J., and Harker, A. B., J. Appl. Phys. 66, 5844 (1989).CrossRefGoogle Scholar
3.Chain, E. E., J. Vac. Sci. Technol. A 4, 432 (1986).CrossRefGoogle Scholar
4.Rogers, K. D., Coath, J. A., and Lovell, M. C., J. Appl. Phys. 70, 1412 (1991).CrossRefGoogle Scholar
5.Case, F. C., J. Vac. Sci. Technol. A 7, 1194 (1989).CrossRefGoogle Scholar
6.Partlow, D. P., Gurkovich, S. R., Radford, K. C., and Denes, L. J., J. Appl. Phys. 70, 443 (1991).CrossRefGoogle Scholar
7.Kusano, E. and Theil, J. A., J. Vac. Sci. Technol. A 7, 1314 (1989).CrossRefGoogle Scholar
8.Nikitin, S. E., Khakhaev, I. A., Chudnovskii, F. A., and Shadrin, E. B., Phys. Solid State 35, 1393 (1993).Google Scholar
9.Griffiths, C. H. and Eastwood, H. K., J. Appl. Phys. 45, 2201 (1974).CrossRefGoogle Scholar
10.Jerominek, H., Picard, F., and Vincent, D., Optical Eng. 32, 2092 (1993).CrossRefGoogle Scholar
11.Case, F. C., J. Vac. Sci. Technol. A 2, 1509 (1984).CrossRefGoogle Scholar
12.Greenberg, C. B., Thin Solid Films 110, 73 (1983).CrossRefGoogle Scholar
13.Ladd, L. A. and Paul, W., Solid State Commun. 7, 425 (1969).CrossRefGoogle Scholar
14.Borek, M., Qian, F., Nagabushnam, V., and Singh, R. K., Appl. Phys. Lett. 63, 3288 (1993).CrossRefGoogle Scholar
15.Kim, D. H. and Kwok, H. S., Appl. Phys. Lett. 65, 3188 (1994).CrossRefGoogle Scholar
16.Théobald, F., Cabala, R., and Bernard, J., J. Solid State Chem. 17, 431 (1976).CrossRefGoogle Scholar
17.Adler, D., in Solid State Physics, edited by Seitz, F., Turnbull, D., and Ehrenreich, H. (Academic Press, New York, 1968), Vol. 21, p. 1.Google Scholar
18.Fukuma, M., Zembutsu, S., and Miyazawa, S., Appl. Opt. 22, 265 (1983).CrossRefGoogle Scholar
19.Kwan, C. C. Y., Griffiths, C. H., and Eastwood, H. K., Appl. Phys. Lett. 20, 93 (1972).CrossRefGoogle Scholar
20.Futaki, H. and Aoki, M., Jpn. J. Appl. Phys. 8, 1008 (1969).CrossRefGoogle Scholar
21.Remke, R. L., Walser, R. M., and Bené, R. W., Thin Solid Films 61, 73 (1979).CrossRefGoogle Scholar
22.Nyberg, G. A. and Buhrman, R. A., J. Vac. Sci. Technol. A 2, 301 (1984).CrossRefGoogle Scholar
23.Macchesney, J. B. and Guggenheim, H. J., J. Phys. Chem. Solids 30, 225 (1969).CrossRefGoogle Scholar
24.Goodenough, J. B., J. Solid State Chem. 3, 490 (1971).CrossRefGoogle Scholar
25.Zylbersztejn, A. and Mott, N. F., Phys. Rev. B 11, 4383 (1975).CrossRefGoogle Scholar