Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-03T12:44:20.225Z Has data issue: false hasContentIssue false

Oxidation behavior of platinum–aluminum alloys and the effect of Zr doping

Published online by Cambridge University Press:  31 January 2011

E. C. Dickey
Affiliation:
Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506–0046
B. A. Pint
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
K. B. Alexander
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
I. G. Wright
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Get access

Abstract

The isothermal and cyclic oxidation behavior of PtAl and PtAl + Zr was studied followed by postoxidation microstructural and microchemical analyses. Their isothermal oxidation performance at 1200 °C was similar to that of NiAl and NiAl + Zr. In short (1-h) cycles, the cyclic oxidation resistance of undoped PtAl was found to be substantially better than NiAl. However, with longer (100-h) cycles, little improvement in the metal consumption rate was observed relative to NiAl. The addition of Zr to PtAl significantly improved cyclic oxidation performance in both short- and long-cycle tests. Spatially resolved energy dispersive spectroscopy indicated Zr segregation to both the metal–oxide interface and Al2O3 grain boundaries.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Felten, E.J., Oxid. Met. 10, 23 (1976).CrossRefGoogle Scholar
2.Fountain, J.G., Golightly, F. A., Stott, F.H., and Wood, G.C., Oxid. Met. 10, 341 (1976).CrossRefGoogle Scholar
3.Allam, I.M., Akuezue, H.C., and Whittle, D. P., Oxid. Met. 14, 517 (1980).CrossRefGoogle Scholar
4.Lowrie, D. and Boone, D.H., Thin Solid Films 45, 491 (1977).CrossRefGoogle Scholar
5.Lehnert, G. and Meinhardt, H., Electrodep. Surf. Treat. 1, 189 (1972/1973).CrossRefGoogle Scholar
6.Farrell, M.S., Boone, D.H., and Streiff, R., Surf. Coat. Technol. 32, 69 (1987).CrossRefGoogle Scholar
7.Schaeffer, J., Kim, G., Meier, G.H., and Pettit, F.S., in The Role of Active Elements in the Oxidation Behavior of High Temperature Metals and Alloys, edited by Lang, E. (Elsevier Applied Science, London, United Kingdom, 1989), p. 231.Google Scholar
8.Warnes, B.M. and Punola, D.C., Surf. Coat. Technol. 94–95, 1 (1997).CrossRefGoogle Scholar
9.Miller, R.A., J. Am. Ceram. Soc. 67, 517 (1984).CrossRefGoogle Scholar
10.Miller, R.A., J. Eng. Gas. Turb. Power 111, 301 (1989).CrossRefGoogle Scholar
11.Meier, S.M., Nissley, D.M., Sheffler, K.D., and Cruse, T.A., J. Eng. Gas Turb. Power 114, 258 (1992).CrossRefGoogle Scholar
12.Felten, E.J. and Pettit, F.S., Oxid. Met. 10, 189 (1976).CrossRefGoogle Scholar
13.The Role of Active Elements in the Oxidation Behavior of High Temperature Metals and Alloys, edited by E. Lang (Elsevier Applied Science, London, 1989).Google Scholar
14.The Reactive Element Effect on High Temperature Oxidation-After Fifty Years, edited by W.E. King (Materials Science Forum 43, Trans. Tech Publications, Switzerland, 1989).Google Scholar
15.Moon, D.P., Mater. Sci. Technol. 5, 754 (1989).CrossRefGoogle Scholar
16.Strawbridge, A. and Hou, P.Y., Mater. High Temp. 12, 177 (1994).CrossRefGoogle Scholar
17.Pint, B.A., Oxid. Met. 45, 1 (1996).CrossRefGoogle Scholar
18.Pint, B.A., Wright, I.G., Lee, W.Y., Zhang, Y., Prüβner, K., and Alexander, K.B., Mater. Sci. Eng. A245, 201 (1998).CrossRefGoogle Scholar
19.McAlister, A.J. and Kahan, D.J., Bull. Alloy Phase Diagrams 7(1), (1986).Google Scholar
20.Pint, B.A., Oxid. Met. 49, 531 (1998).CrossRefGoogle Scholar
21.Pint, B.A., Garratt-Reed, A.J., and Hobbs, L.W., Mater. High Temp. 13, 3 (1995).CrossRefGoogle Scholar
22.Pint, B.A., Martin, J.R., and Hobbs, L.W., Oxid. Met. 39, 167 (1993).CrossRefGoogle Scholar
23.Smialek, J. and Gibala, R., in High Temperature Corrosion, edited by Rapp, R.A. (NACE, Houston, TX, 1983), pp. 274283.Google Scholar
24.Pint, B.A., Oxid. Met. 48, 303 (1997).CrossRefGoogle Scholar
25.Smialek, J.L., Met. Trans. 9A, 309 (1978).CrossRefGoogle Scholar
26.Hindam, H.M. and Smeltzer, W.W., J. Electrochem. Soc. 127, 1630 (1980).CrossRefGoogle Scholar
27.Doychak, J., Smialek, J.L., and Barrett, C.A., in Oxidation of High-Temperature Intermetallics, edited by Grobstein, T. and Doychak, J. (TMS, Warrendale, PA, 1988), pp. 4155.Google Scholar
28.Prescott, R., Mitchell, D.F., Graham, M.J., and Doychak, J., Corr. Sci. 37, 1341 (1995).CrossRefGoogle Scholar
29.Pint, B.A., Garratt-Reed, A.J., and Hobbs, L.W., J. Am. Ceram. Soc. 81, 305 (1998).CrossRefGoogle Scholar
30.Pint, B.A., Alexander, K.B., Monteiro, O.R., and Brown, I.G., in Diffusion Mechanisms in Crystalline Materials, edited by Mishin, Y., Vogl, G., Cowern, N., Catlow, R., and Farkas, D., (Mater. Res. Soc. Symp. Proc. 527, Warrendale, PA, 1998), pp. 497502.Google Scholar
31.Binary Alloy Phase Diagrams, 1st ed., edited by T.B. Massalski, J.L. Murray, L.H. Bennett, and H. Baker (ASM International, Metals Park, OH, 1986).Google Scholar
32.Seidman, D.N., Krakauer, B.W., and Udler, D., J. Chem. Phys. Solids 55, 1035 (1994).CrossRefGoogle Scholar
33.Pint, B.A., Garratt-Reed, A.J., and Hobbs, L.W., in Microscopy of Oxidation 2, edited by Newcomb, S.B. and Bennett, M.J. (Institute of Metals, London, United Kingdom, 1993), pp. 463475.Google Scholar
34.Schumann, E., Yang, J.C., Graham, M.J., and Rühle, M., Mater. Corr. 46, 218 (1995).Google Scholar
35.Pint, B.A. and Alexander, K.B., J. Electrochem. Soc. 145, 1819 (1998).CrossRefGoogle Scholar
36.Pint, B.A. and Wright, I.G. (unpublished).Google Scholar
37.Brumm, M.W. and Grabke, H.J., Corr. Sci. 34, 547 (1993).CrossRefGoogle Scholar
38.Meier, G.H., Mater. Corr. 47, 595 (1996).Google Scholar
39.Grabke, H.J., Weimer, D., and Viefhaus, H., Appl. Surf. Sci. 47, 2443 (1991).CrossRefGoogle Scholar
40.Pint, B.A. and Hobbs, L.W., J. Electrochem. Soc. 141, 2443 (1994).CrossRefGoogle Scholar
41.Alexander, K.B., Prüβner, K., Hou, P.Y., and Tortorelli, P.F., in Microscopy of Oxidation 3, edited by Newcomb, S.B. and Little, J.A. (Institute of Metals, London, United Kingdom, 1997), pp. 246255.Google Scholar
42.Quadakkers, W.J., Holzbrecher, H., Briefs, K.G., and Beske, H., Oxid. Met. 32, 67 (1989).CrossRefGoogle Scholar
43.Smeggil, J.G., Funkenbusch, A.W., and Bornstein, N.S., Met. Trans. 17A, 923 (1986).CrossRefGoogle Scholar
44.Smialek, J.L., Jayne, D.T., Schaeffer, J.C., and Murphy, W.H., Thin Solid Films 253, 285 (1994).CrossRefGoogle Scholar
45.Hou, P.Y., Oxid. Met. 52, 337 (1999).CrossRefGoogle Scholar
46.Anderson, A.B., Mehandru, S.P., and Smialek, J.L., J. Electrochem. Soc. 132, 1695 (1985).CrossRefGoogle Scholar
47.Hindman, H.M. and Whittle, D.P., Oxid. Met. 18, 245 (1982).Google Scholar
48.Evans, H.E., Int. Mater. Rev. 40, 140 (1995).CrossRefGoogle Scholar