Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-24T14:26:56.656Z Has data issue: false hasContentIssue false

Optimizing diamond growth for an atmospheric oxyacetylene torch

Published online by Cambridge University Press:  31 January 2011

Lua'y A. Zeatoun
Affiliation:
Chemical Engineering Department, Case Western Reserve University, Cleveland, Ohio 44106
Philip W. Morrison Jr
Affiliation:
Chemical Engineering Department, Case Western Reserve University, Cleveland, Ohio 44106
Get access

Abstract

Diamond growth conditions for an atmospheric combustion flame have been optimized using statistical experimental design. Films are grown on a molybdenum bolt for 40 min at a distance of 1 mm from the flame cone. The diamond films have been characterized using Raman spectroscopy, x-ray diffraction, and scanning electron microscope. The input process variables are varied over a range of conditions: total gas flow rate Q = 2–4 standard liter/min, substrate surface temperature Ts = 800–1000 °C, and flow ratio of O2/C2H2 = R = 0.93–0.99. The experimental response outputs are growth rate, full width half maximum (FWHM) of the diamond Raman peak, Raman diamond fraction (β) in the film, ratio of luminescence to diamond peak height (LR), and the relative intensity of the {220}, {311}, {400}, and {331} orientations. The film quality indices FWHM, β, and LR improve by increasing the gas ratio (R), by increasing substrate surface temperature (Ts), and lowering the growth rate by decreasing total gas flow rate. Diamond film shows a small amount texturing in {220} and {400} orientation at low R and Ts. At high R and low Ts crystals are oriented with the {111} direction normal to the substrate surface. Jet and boundary layer theory have been applied to understand the growth rate, the thickness profile, and the morphological instability of the diamond films. Surface Damkühler calculation shows that the deposition process is marginally controlled by mass transfer. Growth rate of an open flame is higher than for an enclosed flame, while the Raman quality measurements of the enclosed flame are more uniform than open flame over the range of the comparison.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Angus, J. C. and Hayman, C. C., Science 241, 913 (1988).CrossRefGoogle Scholar
2.Knight, D. S. and White, W. B., J. Mater. Res. 4, 385 (1989).CrossRefGoogle Scholar
3.Oakes, D. B. and Butler, J. E., J. Appl. Phys. 69, 2602 (1991).CrossRefGoogle Scholar
4.Hanssen, L. M., Snail, K. A., Carrington, W. A., Butler, J. E., Kellogg, S., and Oakes, D. B., Thin Solid Films 196, 271 (1991).CrossRefGoogle Scholar
5.Glumac, N. G. and Goodwin, D. G., Thin Solid Films 212, 122 (1992).CrossRefGoogle Scholar
6.Kovach, C. S., Roozbehani, B., Suzuki, T., and Angus, J. C., in Proceedings of the Second International Conference on the Applications of Diamond Films and Related Materials, edited by Murakawa, M. (MYU, Tokyo, 1993).Google Scholar
7.Ravi, K. V., J. Mater. Res. 7, 384 (1992).CrossRefGoogle Scholar
8.Snail, K. A., Oakes, D. B., Butler, J. E., and Hanssen, L. M., in New Diamond Science and Technology, edited by Messier, R., Glass, J. T., Butler, J. E., and Roy, R. (Mater. Res. Soc. Symp. Int. Proc. NDST2, Pittsburgh, PA, 1991), p. 503.Google Scholar
9.Lee, W. S., Baik, Y-J., and Eun, K. Y., in New Diamond Science and Technology, edited by Messier, R., Glass, J. T., Butler, J. E., and Roy, R. (Mater. Res. Soc. Symp. Int. Proc. NDST2, Pittsburgh, PA, 1991), p. 593.Google Scholar
10.Phillips, R., Wei, J., and Tzeng, Y., Thin Solid Films 212, 30 (1992).CrossRefGoogle Scholar
11.Schermer, J. J., Hogenkamp, J. E. M., Otter, G. C. J., Janssen, G., van Enckevort, W. J. P., and Giling, L. J., Diam. Related Mater. 2, 1149 (1993).CrossRefGoogle Scholar
12.Morrison, P. W., Jr., Somashekhar, A., Glass, J. T., and Prater, J. T., J. Appl. Phys. 78, 4144 (1995).CrossRefGoogle Scholar
13.Tzeng, Y. and Phillips, R., in Proceedings of the Second International Symposium on Diamond Materials, edited by Purdes, A. J., Angus, J. C., Davis, R. F., Meyerson, B. S., Spear, K. E., and Yoder, M. (The Electrochemical Society, Pennington, NJ, 1991), Vol. 91–8, p. 49.Google Scholar
14.Sivazlian, F. R., von Windheim, J. A., and Glass, J. T., in Novel Forms of Carbon, edited by Renschler, C. L., Pouch, J. J., and Cox, D. M. (Mater. Res. Soc. Symp. Proc. 270, Pittsburgh, PA, 1992), p. 329.Google Scholar
15.von Windheim, J. A., Sivazlian, F., McClure, M. T., and Glass, J. T., Diam. Related Mater. 2, 438 (1993).CrossRefGoogle Scholar
16.Morrison, P. W., Jr., Cosgrove, J. E., Markham, J. R., and Solomon, P. R., Carbon 28, 767 (1990).CrossRefGoogle Scholar
17.Morrison, P. W. Jr, Cosgrove, J. E., Markham, J. R., and Solomon, P. R., in New Diamond Science and Technology, edited by Messier, R., Glass, J. T., Butler, J. E., and Roy, R. (Mater. Res. Soc. Symp. Int. Proc. NDST2, Pittsburgh, PA, 1991), p. 219.Google Scholar
18.Morrison PW, J., Taweechokesupsin, O., Kovach, C. S., Roozbehani, B., and Angus, J. C., Diam. Related Mater. (1995).Google Scholar
19.Khuri, A. I. and Cornell, J. A., Statistics Textbook and Monograph Series, 81: Response Surfaces: Design and Analyses (Marcel Dekker, Inc., New York, 1987).Google Scholar
20.Hirose, Y. and Amanuma, S., J. Appl. Phys. 68, 6401 (1990).CrossRefGoogle Scholar
21.Aldredge, R. C. and Goodwin, D. G., J. Mater. Res. 9, 80 (1994).CrossRefGoogle Scholar
22.Tzeng, Y., Cutshaw, C., Phillips, R., and Srivinyunon, T., Appl. Phys. Lett. 56, 134 (1990).CrossRefGoogle Scholar
23.Ravi, K. V. and Koch, C. A., Appl. Phys. Lett. 57, 348 (1990).CrossRefGoogle Scholar
24.Ravi, K. V., Koch, C. A., Hu, H. S., and Joshi, A., J. Mater. Res. 5, 2356 (1990).CrossRefGoogle Scholar
25.von Windheim, J. A. and Glass, J. T., J. Mater. Res. 7, 2144 (1992).CrossRefGoogle Scholar
26.Golozar, M. A., McColl, I. R., Grant, D. M., and Wood, J. V., Diam. Related Mater. 1, 262 (1992).CrossRefGoogle Scholar
27.McClure, M. T., von Windheim, J. A., Glass, J. T., and Prater, J. T., Diam. Related Mater. 3, 239 (1994).CrossRefGoogle Scholar
28.Menningen, K. L., Childs, M. A., Toyoda, H., Anderson, L. A., and Lawler, J. E., J. Mater. Res. 9, 915 (1994).CrossRefGoogle Scholar
29.Wang, R. B., Sommer, M., and Smith, F. W., J. Cryst. Growth 119, 271 (1992).CrossRefGoogle Scholar
30.Schlichting, H., Boundary Layer Theory (McGraw-Hill, New York, 1968).Google Scholar
31.Gaydon, A. G. and Wolfhard, H. G., Flames, 2nd ed. (Chapman & Hall Ltd., London, 1960).Google Scholar
32.Snail, K. A., Vardiman, R. G., Estrera, J. P., Glesener, J. W., Merzbacher, C., Craigie, C. J., Marks, C. M., Glosser, R., and Freitas, J. A., Jr., J. Appl. Phys. 74, 7561 (1993).CrossRefGoogle Scholar
33.Alers, P., Hanni, W., and Hintermann, H. E., Diam. Related Mater. 2, 393 (1993).CrossRefGoogle Scholar
34.Kanury, A. M., Introduction to Combustion Phenomena (Gordon and Preach Science, New York, 1975).Google Scholar
35.Stuart, S. A., Prawer, S., and Weiser, P. S., Diam. Related Mater. 2, 753 (1993).CrossRefGoogle Scholar
36.Prawer, S., Nugent, K. W., and Weiser, P. S., Appl. Phys. Lett. 65, 2248 (1994).CrossRefGoogle Scholar
37.Graebner, J. E., Mucha, J. A., Seibles, L., and Kammlott, G. W., J. Appl. Phys. 71, 3143 (1992).CrossRefGoogle Scholar
38.Bachmann, P. K., Bausen, H. D., Lade, H., Leers, D., Wiechert, D. U., Herres, N., Kohl, R., and Koidl, P., Diam. Related Mater. 3, 1308 (1994).CrossRefGoogle Scholar
39.Bergman, L., Stoner, B. R., Turner, K. F., Glass, J. T., and Nemanich, R. J., J. Appl. Phys. 73, 3951 (1993).CrossRefGoogle Scholar
40.Freitas, J. A., Jr., Butler, J. E., and Strom, U., J. Mater. Res. 5, 2502 (1990).CrossRefGoogle Scholar
41.Bergman, L., McClure, M. T., Glass, J. T., and Nemanich, R. J., J. Appl. Phys. 76, 3020 (1994).CrossRefGoogle Scholar
42.Segmuller, A. and Murakami, M., in Thin Films From Free Atoms and Particles, edited by Klabunde, K. (Academic Press, Inc., New York, 1985), p. 325.CrossRefGoogle Scholar
43.Okada, K., Komatsu, S., Matsumoto, S., and Moriyoshi, Y., J. Mater. Sci. 26, 3081 (1991).CrossRefGoogle Scholar
44.Hong, F. C. N., Chang, H. M., Hsieh, J. C., Hwang, J. H., and Wu, J. J., Thin Solid Films 212, 127 (1992).CrossRefGoogle Scholar
45.Montgomery, D., Design and Analysis of Experiments, 3rd ed. (John Wiley & Sons, New York, 1991).Google Scholar
46.Mcclave, J. T. and Benson, P., Statistics for Business and Economics, 3rd ed. (Dellen Publishing Co., San Francisco, 1991).Google Scholar
47.Myers, R. H. and Montgomery, D. C., Response Surface Methodology (John Wiley & Sons, Inc., New York, 1995).Google Scholar
48.Hirose, Y., Amanuma, S., Okada, N., and Komaki, K., in Proceedings of the First International Symposium on Diamond Materials, edited by Purdes, A. J., Meyerson, B. S., Moustakas, T. D., Spear, K. E., Ravi, K. V., and Yoder, M. (The Electrochemical Society, Pennington, NJ, 1989), Vol. 89–12, p. 80.Google Scholar
49.Montgomery, D., Design and Analysis of Experiments, 3rd ed. (John Wiley & Sons, New York, 1991).Google Scholar
50.Choi, S. J. and Shin, Y. S., in Materials Science Monographs, 73: Applications of Diamond Films and Related Materials, edited by Tzeng, Y., Yoshikawa, M., Murakawa, M., and Feldman, A. (Elsevier Science, Amsterdam, 1991), p. 527.Google Scholar
51.Wild, C., Koidl, P., Muller-Sebert, W., Walcher, H., Kohl, R., Herres, N., Locher, R., Samlenski, R., and Brenn, R., Diam. Related Mater. 2, 158 (1993).CrossRefGoogle Scholar
52.Harris, S. J., J. Appl. Phys. 65, 3044 (1989).CrossRefGoogle Scholar
53.Matsui, Y., Yabe, H., and Hirose, Y., Jpn. J. Appl. Phys. 29, 1552 (1990).CrossRefGoogle Scholar
54.Goodwin, D. G., Appl. Phys. Lett. 59, 277 (1991).CrossRefGoogle Scholar
55.Matsui, Y., Yabe, H., and Hirose, Y., Diam. Related Mater. 2, 7 (1993).CrossRefGoogle Scholar
56.Schlichting, H., Boundary Layer Theory (McGraw-Hill, New York, 1968).Google Scholar
57.Trebal, R., Mass-Transfer Operations (McGraw-Hill, New York, 1968).Google Scholar
58. NIST Chemical Kinetics Database, V2.0.Google Scholar
59.Snail, K. A. and Marks, C. M., Appl. Phys. Lett. 60, 3135 (1992).CrossRefGoogle Scholar
60.Kanury, A. M., Introduction to Combustion Phenomena (Gordon and Preach Science, New York, 1975).Google Scholar
61.Schlichting, H., Boundary Layer Theory (McGraw-Hill, New York, 1968).Google Scholar
62.Kanury, A. M., Introduction to Combustion Phenomena (Gordon and Preach Science, New York, 1975).Google Scholar
63.Bachmann, P. K., Leers, D., and Lydtin, H., Diam. Related Mater. 1, 1 (1991).CrossRefGoogle Scholar
64.Prijaya, N. A., Angus, J. C., and Bachmann, P. K., Diam. Related Mater. 3, 129 (1993).CrossRefGoogle Scholar
65.Cassidy, W. D., Factors Influencing Diamond, Boron, and Silicon Carbides Synthesis (M.Sc. Thesis, Case Western Reserve University, Cleveland, 1995).Google Scholar
66.Sunkara, M., Angus, J. C., Hayman, C. C., and Buck, F. A., Carbon 28, 745 (1990).CrossRefGoogle Scholar
67.Locher, R., Wild, C., Herres, N., Behr, D., and Koidl, P., Appl. Phys. Lett. 65, 34 (1994).CrossRefGoogle Scholar
68.Badzian, A., Badzian, T., and Lee, S. T., Appl. Phys. Lett. 62, 3432 (1993).CrossRefGoogle Scholar
69.Kanury, A. M., Introduction to Combustion Phenomena (Gordon and Preach Science, New York, 1975).Google Scholar
70.Jin, S. and Moustakas, T. D., Appl. Phys. Lett. 65, 403 (1994).CrossRefGoogle Scholar