Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-07-07T08:42:28.314Z Has data issue: false hasContentIssue false

One-step electrodeposition of CdS/ZnS bilayer from an aqueous mixture of Cd2+ and Zn2+

Published online by Cambridge University Press:  31 January 2011

Koichi Yamaguchi
Affiliation:
Department of Chemistry, Faculty of Engineering, Gifu University, Yanagido 1–1, Gifu 501–11, Japan
Tsukasa Yoshida
Affiliation:
Department of Chemistry, Faculty of Engineering, Gifu University, Yanagido 1–1, Gifu 501–11, Japan
Takashi Sugiura
Affiliation:
Department of Chemistry, Faculty of Engineering, Gifu University, Yanagido 1–1, Gifu 501–11, Japan
Hideki Minoura
Affiliation:
Department of Chemistry, Faculty of Engineering, Gifu University, Yanagido 1–1, Gifu 501–11, Japan
Get access

Abstract

Electrochemical thin film deposition in aqueous mixtures containing Cd2+, Zn2+, and thioacetamide has been investigated. It has been found that the atom-by-atom growth of well-crystallized CdS thin film preferentially takes place at the early stage of the reaction, followed by the cluster-by-cluster growth of the poorly crystallized ZnS outer layer, thus resulting in the formation of CdS/ZnS bilayer by a one-step synthesis.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Proceeding of International Workshop on Soft and Solution Processing for Advanced Inorganic Materials, edited by Yoshimura, M., Kakihana, M., and Yashima, M., Soft Solution Processing Research Group, Tokyo Institute of Technology, Yokohama, Japan (1996).Google Scholar
2.Froment, M. and Lincot, D., Electrochim. Acta 40, 1293 (1995).CrossRefGoogle Scholar
3.Ortega-Borges, R. and Lincot, D., J. Electrochem. Soc. 140, 3464 (1993).CrossRefGoogle Scholar
4.Rieke, P. C. and Bentjen, S. B., Chem. Mater. 5, 43 (1993).CrossRefGoogle Scholar
5.Kaur, I., Pandya, D. K., and Chopra, K. L., J. Electrochem. Soc. 127, 943 (1980).CrossRefGoogle Scholar
6.Doña, J. M. and Herrero, J., J. Electrochem. Soc. 139, 2810 (1992).CrossRefGoogle Scholar
7.Doña, J. M. and Herrero, J., J. Electrochem. Soc. 141, 205 (1994).CrossRefGoogle Scholar
8.Nair, P. K. and Nair, M. T. S., Semicond. Sci. Technol. 7, 239 (1992).CrossRefGoogle Scholar
9.Minoura, H., Kajita, T., Yamaguchi, K., Takahashi, Y., and Amarnerkar, D. P., Chem. Lett., 339 (1994).CrossRefGoogle Scholar
10.Das, S. K., Solar Energy Mater. Sol. Cells 29, 277 (1993).CrossRefGoogle Scholar
11.Sanders, B. W. and Kitai, A. H., J. Cryst. Growth 100, 405 (1990).CrossRefGoogle Scholar
12.Yamaguchi, T., Yamamoto, Y., Tanaka, T., Demizu, Y., and Yoshida, A., Thin Solid Films 281–282, 375 (1996).CrossRefGoogle Scholar
13.Morris, G. C. and Vanderveen, R., Solar Energy Mater. Sol. Cells 26, 217 (1992).CrossRefGoogle Scholar
14.Edamura, T. and Muto, J., J. Mater. Sci. Lett. 14, 889 (1995).CrossRefGoogle Scholar
15.Yamaguchi, K., Yoshida, T., Sugiura, T., and Minoura, H., unpublished.Google Scholar
16.Yamaguchi, K., Yoshida, T., Sugiura, T., and Minoura, H., unpublished.Google Scholar