Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-23T14:52:45.270Z Has data issue: false hasContentIssue false

One-pot solvothermal method to prepare functionalized Fe3O4 nanoparticles for bioseparation

Published online by Cambridge University Press:  28 February 2012

Guoxin Zhang
Affiliation:
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, People’s Republic of China
Fengxiang Qie
Affiliation:
Beijing Key Lab of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People’s Republic of China
Jianxuan Hou
Affiliation:
Beijing Key Lab of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People’s Republic of China
Shizhong Luo
Affiliation:
Beijing Key Lab of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People’s Republic of China
Liang Luo
Affiliation:
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, People’s Republic of China
Xiaoming Sun*
Affiliation:
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, People’s Republic of China
Tianwei Tan*
Affiliation:
Beijing Key Lab of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People’s Republic of China
*
a)Address all correspondence to these authors. e-mail: sunxm@mail.buct.edu.cn
Get access

Abstract

Surface-functionalized magnetic nanoparticles were prepared by a facile one-pot solvothermal method in ethylene glycol solution. Zeta value, size, and magnetic properties could be well tuned by introducing different functional group molecules. Characterizations, including transmission electronic microscopy, scanning electronic microscopy, thermogravimetric analysis, x-ray powder diffraction and vibrating sample magnetometer, and Fourier transform infrared spectrophotometer demonstrated the efficiency of this simple and general synthesis strategy. The hydrophilic magnetic nanoparticles with various surface functional groups and zeta values were evidenced as excellent candidates for bioseparation by extracting DNA molecules from a model mixture of cell fractures.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Son, S.J., Reichel, J., He, B., Schuchman, M., and Lee, S.B.: Magnetic nanotubes for magnetic-field-assisted bioseparation, biointeraction, and drug delivery. J. Am. Chem. Soc. 127(20), 7316 (2005).CrossRefGoogle ScholarPubMed
2.Fang, W., Chen, X., and Zheng, N.: Superparamagnetic core-shell polymer particles for efficient purification of his-tagged proteins. J. Mater. Chem. 20(39), 8624 (2010).CrossRefGoogle Scholar
3.Chun, J., Seo, S.W., Jung, G.Y., and Lee, J.: Easy access to efficient magnetically recyclable separation of histidine-tagged proteins using superparamagnetic nickel ferrite nanoparticle clusters. J. Mater. Chem. 21(18), 6713 (2011).CrossRefGoogle Scholar
4.Lu, A-H., Salabas, E.L., and Schüth, F.: Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 46(8), 1222 (2007).CrossRefGoogle ScholarPubMed
5.Berensmeier, S.: Magnetic particles for the separation and purification of nucleic acids. Appl. Microbiol. Biotechnol. 73(3), 495 (2006).CrossRefGoogle ScholarPubMed
6.Xu, R., Sun, G., Li, Q., Wang, E., and Gu, J.: A dual-responsive superparamagnetic Fe3O4/Silica/PAH/PSS material used for controlled release of chemotherapeutic agent, keggin polyoxotungstate, PM-19. Solid State Sci. 12, 1720 (2010).CrossRefGoogle Scholar
7.Chen, D., Jiang, M., Li, N., Gu, H., Xu, Q., Ge, J., Xia, X., and Lu, J.: Modification of magnetic silica/iron oxide nanocomposites with fluorescent polymethacrylic acid for cancer targeting and drug delivery. J. Mater. Chem. 20(31), 6422 (2010).CrossRefGoogle Scholar
8.Xu, Z., Feng, Y., Liu, X., Guan, M., Zhao, C., and Zhang, H.: Synthesis and characterization of Fe3O4@SiO2@poly-l-alanine, peptide brush-magnetic microspheres through NCA chemistry for drug delivery and enrichment of BSA. Colloids Surf. B 81, 503 (2010).CrossRefGoogle ScholarPubMed
9.Luo, B., Xu, S., Luo, A., Wang, W.R., Wang, S.L., Guo, J., Lin, Y., Zhao, D.Y., and Wang, C.C.: Mesoporous biocompatible and acid-degradable magnetic colloidal nanocrystal clusters with sustainable stability and high hydrophobic drug loading capacity. ACS Nano 5(2), 1428 (2011).CrossRefGoogle ScholarPubMed
10.Govindaiah, P., Park, T.J., Jung, Y.J., Lee, S.J., Ryu, D.Y., Kim, J.H., and Cheong, I.W.: Luminescent iron oxide nanoparticles prepared by one-pot aphen-functionalization. Macromol. Res. 18(11), 1109 (2010).CrossRefGoogle Scholar
11.Lin, M.M., Li, S., Kim, H.H., Kim, H., Lee, H.B., and Muhammed, M.: Complete separation of magnetic nanoparticles via chemical cleavage of dextran by ethylenediamine for intracellular uptake. J. Mater. Chem. 20(3), 444 (2009).CrossRefGoogle Scholar
12.Liu, J., Sun, Z., Deng, Y., Zou, Y., Li, C., Guo, X., Xiong, L., Gao, Y., Li, F., and Zhao, D.: Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups. Angew. Chem. Int. Ed. 121(32), 5989 (2009).CrossRefGoogle Scholar
13.Oh, J.K. and Park, J.M.: Iron oxide-based superparamagnetic polymeric nanomaterials: Design, preparation, and biomedical application. Prog. Polym. Sci. 36, 168 (2011).CrossRefGoogle Scholar
14.Xuan, S., Wang, F., Lai, J.M.Y., Sham, K.W.Y., Wang, Y.X.J., Lee, S.F., Yu, J.C., Cheng, C.H.K., and Leung, K.C.F.: Synthesis of biocompatible, mesoporous Fe3O4 nano/microspheres with large surface area for magnetic resonance imaging and therapeutic applications. ACS Appl. Mater. Interfaces 3, 237 (2011).CrossRefGoogle ScholarPubMed
15.Shi, Z., Neoh, K.G., Kang, E.T., Shuter, B., Wang, S-C., Poh, C., and Wang, W.: (Carboxymethyl)chitosan-modified superparamagnetic iron oxide nanoparticles for magnetic resonance imaging of stem cells. ACS Appl. Mater. Interfaces 1(2), 328 (2008).CrossRefGoogle Scholar
16.Gupta, A.K. and Wells, S.: Surface-modified superparamagnetic nanoparticles for drug delivery: Preparation, characterization, and cytotoxicity studies. IEEE Trans. Nanobiosci. 3(1), 66 (2004).CrossRefGoogle ScholarPubMed
17.Gupta, A.K. and Gupta, M.: Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18), 3995 (2005).CrossRefGoogle ScholarPubMed
18.da Costa, G.M., De Grave, E., de Bakker, P.M.A., and Vandenberghe, R.E.: Synthesis and characterization of some iron oxides by sol-gel method. J. Solid State Chem. 113(2), 405 (1994).CrossRefGoogle Scholar
19.Dave, S.R. and Gao, X.: Monodisperse magnetic nanoparticles for biodetection, imaging, and drug delivery: A versatile and evolving technology. Nanomed. Nanobiotechnol. 1(6), 583 (2009).CrossRefGoogle ScholarPubMed
20.Teng, X. and Yang, H.: Synthesis of face-centered tetragonal FePt nanoparticles and granular films from Pt@Fe2O3 core-shell nanoparticles. J. Am. Chem. Soc. 125(47), 14559 (2003).CrossRefGoogle ScholarPubMed
21.Ge, J., Hu, Y., Biasini, M., Beyermann, W.P., and Yin, Y.: Superparamagnetic magnetite colloidal nanocrystal clusters. Angew. Chem. Int. Ed. 46(23), 4342 (2007).CrossRefGoogle ScholarPubMed
22.Wang, L., Bao, J., Wang, L., Zhang, F., and Li, Y.: One-pot synthesis and bioapplication of amine-functionalized magnetite nanoparticles and hollow nanospheres. Chemistry 12(24), 6341 (2006).CrossRefGoogle ScholarPubMed
23.Tang, B., Wang, G., Zhuo, L., Ge, J., and Cui, L.: Facile route to α-FeOOH and α-Fe2O3 nanorods and magnetic property of γ-Fe2O3 nanorods. Inorg. Chem. 45(13), 5196 (2006).CrossRefGoogle Scholar
24.Taniguchi, T., Nakagawa, K., Watanabe, T., Matsushita, N., and Yoshimura, M.: Hydrothermal growth of fatty acid stabilized iron oxide nanocrystals. J. Phys. Chem. C 113(3), 839 (2008).CrossRefGoogle Scholar
25.Deng, H., Li, X., Peng, Q., Wang, X., Chen, J., and Li, Y.: Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. Int. Ed. 117(18), 2842 (2005).CrossRefGoogle Scholar
26.Ge, J., Hu, Y., Zhang, T., and Yin, Y.: Superparamagnetic composite colloids with anisotropic structures. J. Am. Chem. Soc. 129(29), 8974 (2007).CrossRefGoogle ScholarPubMed
27.Yuan, Q., Venkatasubramanian, R., Hein, S., and Misra, R.D.K.: A stimulus-responsive magnetic nanoparticle drug carrier: Magnetite encapsulated by chitosan-grafted-copolymer. Acta Biomater. 4(4), 1024 (2008).CrossRefGoogle ScholarPubMed
28.Wang, X., Zhou, L., Ma, Y., Li, X., and Gu, H.: Control of aggregate size of polyethyleneimine-coated magnetic nanoparticles for magnetofection. Nano Res. 2(5), 365 (2009).CrossRefGoogle Scholar
29.Li, G-y., Huang, K-l., Jiang, Y-r., Ding, P., and Yang, D-l.: Preparation and characterization of carboxyl functionalization of chitosan derivative magnetic nanoparticles. Biochem. Eng. J. 40(3), 408 (2008).CrossRefGoogle Scholar
30.Mikhaylova, M., Kim, D.K., Berry, C.C., Zagorodni, A., Toprak, M., Curtis, A.S.G., and Muhammed, M.: BSA immobilization on amine-functionalized superparamagnetic iron oxide nanoparticles. Chem. Mater. 16(12), 2344 (2004).CrossRefGoogle Scholar
31.Tartaj, P., Gonzalez-Carreno, T., Rebolledo, A.F., Bomati-Miguel, O., and Serna, C.J.: Direct aerosol synthesis of carboxy-functionalized iron oxide colloids displaying reversible magnetic behavior. J. Colloid Interface Sci. 309(1), 68 (2007).CrossRefGoogle ScholarPubMed
32.Yourdkhani, A. and Caruntu, G.: Highly ordered transition metal ferrite nanotube arrays synthesized by template-assisted liquid phase deposition. J. Mater. Chem. 21(20), 7145 (2011).CrossRefGoogle Scholar
33.Yu, X., Shan, Y., Du, B., and Chen, K.: One-pot and template-free fabrication of dendritic and octahedral single-crystal magnetites. CrystEngComm. 13, 1525 (2011).CrossRefGoogle Scholar
34.Liang, J., Li, L., Luo, M., and Wang, Y.: Fabrication of Fe3O4 octahedra by a triethanolamine-assisted hydrothermal process. Cryst. Res. Technol. 46(1), 95 (2011).CrossRefGoogle Scholar
35.Wang, X., Zhao, Z., Qu, J., Wang, Z., and Qiu, J.: Shape-control and characterization of magnetite prepared via a one-step solvothermal route. Cryst. Growth Des. 10, 2863 (2010).CrossRefGoogle Scholar
36.Cheng, W., Tang, K., and Sheng, J.: Highly water-soluble superparamagnetic ferrite colloidal spheres with tunable composition and size. Chem. Eur. J. 16(12), 3608 (2010).CrossRefGoogle ScholarPubMed
37.Sun, H., Wei, H., Zhang, H., Ning, Y., Tang, Y., Zhai, F., and Yang, B.: Self-assembly of CdTe nanoparticles into dendrite structure: A microsensor to Hg2+. Langmuir 27(3), 1136 (2011).CrossRefGoogle ScholarPubMed
38.Li, Y., Dong, C., Chu, J., Qi, J., and Li, X.: Surface molecular imprinting onto fluorescein-coated magnetic nanoparticles via reversible addition fragmentation chain transfer polymerization: A facile three-in-one system for recognition and separation of endocrine disrupting chemicals. Nanoscale 3, 280 (2011).CrossRefGoogle ScholarPubMed
39.Zhou, W.H., Lu, C.H., Guo, X.C., Chen, F.R., Yang, H.H., and Wang, X.R.: Mussel-inspired molecularly imprinted polymer coating superparamagnetic nanoparticles for protein recognition. J. Mater. Chem. 20(5), 880 (2009).CrossRefGoogle Scholar
40.Song, X., Yang, Y., Liu, J., and Zhao, H.: PS colloidal particles stabilized by graphene oxide. Langmuir 27(3), 1186 (2011).CrossRefGoogle ScholarPubMed
41.Wang, C., Tao, S., Wei, W., Meng, C., Liu, F., and Han, M.: Multifunctional mesoporous material for detection, adsorption and removal of Hg2+ in aqueous solution. J. Mater. Chem. 20(22), 4635 (2010).CrossRefGoogle Scholar
42.Chen, H., Zhao, Y., Yang, M., He, J., Chu, P.K., Zhang, J., and Wu, S.: Glycine-assisted hydrothermal synthesis of peculiar porous alpha-Fe2O3 nanospheres with excellent gas-sensing properties. Anal. Chim. Acta 659(1–2), 266 (2010).CrossRefGoogle ScholarPubMed
43.Zhou, K., Zhu, Y., Yang, X., and Li, C.: One-pot preparation of graphene/Fe3O4 composites by a solvothermal reaction. N. J. Chem. 34(12), 2950 (2010).CrossRefGoogle Scholar
44.Tomalia, D.A., Baker, H., Dewald, J., Hall, M., Kallos, G., Martin, S., Roeck, J., Ryder, J., and Smith, P.: A new class of polymers: Starburst-dendritic macromolecules. Polym. J. 17(1), 117 (1985).CrossRefGoogle Scholar
45.Tomalia, D.A., Baker, H., Dewald, J., Hall, M., Kallos, G., Martin, S., Roeck, J., Ryder, J., and Smith, P.: Dendritic macromolecules: Synthesis of starburst dendrimers. Macromolecules 19(9), 2466 (1986).CrossRefGoogle Scholar
46.Zhang, Z., Cui, Y., and Wan, Q.: Surface modification of magnetic silica microspheres and its application to the isolation of plant genomic nucleic acids. Chin. J. Anal. Chem. 35(1), 31 (2007).CrossRefGoogle Scholar
47.Roca, A.G., Marco, J.F., Morales, M.P., and Serna, C.J.: Effect of nature and particle size on properties of uniform magnetite and maghemite nanoparticles. J. Phys. Chem. C 111(50), 18577 (2007).CrossRefGoogle Scholar
48.Wan, S., Huang, J., Yan, H., and Liu, K.: Size-controlled preparation of magnetite nanoparticles in the presence of graft copolymers. J. Mater. Chem. 16(3), 298 (2006).CrossRefGoogle Scholar
49.Hoch, L.B., Mack, E.J., Hydutsky, B.W., Hershman, J.M., Skluzacek, J.M., and Mallouk, T.E.: Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium. Environ. Sci. Technol. 42(7), 2600 (2008).CrossRefGoogle ScholarPubMed
50.Zhi, J., Wang, Y., Lu, Y., Ma, J., and Luo, G.: In situ preparation of magnetic chitosan/Fe3O4 composite nanoparticles in tiny pools of water-in-oil microemulsion. React. Funct. Polym. 66(12), 1552 (2006).CrossRefGoogle Scholar
51.Wang, S.H., Shi, X., Van Antwerp, M., Cao, Z., Swanson, S.D., Bi, X., and Baker, J.R. Jr.: Dendrimer-functionalized iron oxide nanoparticles for specific targeting and imaging of cancer cells. Adv. Funct. Mater. 17(16), 3043 (2007).CrossRefGoogle Scholar
52.Narain, R., Gonzales, M., Hoffman, A.S., Stayton, P.S., and Krishnan, K.M.: Synthesis of monodisperse biotinylated p (NIPAAm)-coated iron oxide magnetic nanoparticles and their bioconjugation to streptavidin. Langmuir 23(11), 6299 (2007).CrossRefGoogle ScholarPubMed
53.McBain, S., Yiu, H., El Haj, A., and Dobson, J.: Polyethyleneimine functionalized iron oxide nanoparticles as agents for DNA delivery and transfection. J. Mater. Chem. 17(24), 2561 (2007).CrossRefGoogle Scholar
54.Taylor, J.I., Hurst, C.D., Davies, M.J., Sachsinger, N., and Bruce, I.J.: Application of magnetite and silica-magnetite composites to the isolation of genomic DNA. J. Chromatogr. A 890(1), 159 (2000).CrossRefGoogle Scholar
55.Yoza, B., Matsumoto, M., and Matsunaga, T.: DNA extraction using modified bacterial magnetic particles in the presence of amino silane compound. J. Biotechnol. 94(3), 217 (2002).CrossRefGoogle ScholarPubMed