Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-29T01:35:41.447Z Has data issue: false hasContentIssue false

Observation and formation mechanism of stable face-centered-cubic Fe nanorods in carbon nanotubes

Published online by Cambridge University Press:  31 January 2011

Hansoo Kim
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611-6400
Michael J. Kaufman
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611-6400
Wolfgang M Sigmund*
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611-6400
David Jacques
Affiliation:
Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40511-8410
Rodney Andrews
Affiliation:
Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40511-8410
*
a)Address all correspondence to this author. e-mail: wsigm@mse.ufl.edu
Get access

Abstract

The crystallographic structure and orientation of iron nanoparticles present in carbon nanotubes (CNTs) was studied when iron was used as a catalyst. It was found that while most of the nanoparticles encapsulated inside the CNTs had the expected α–Fe (body-centered-cubic) phase, a significant number of them formed and retained the γ–Fe (face-centered-cubic) phase that is not the normal bulk phase at room temperature (nor even expected to form at the growth temperature used). It was also found iron particles at the tips of the nanotubes were either α–Fe or cementite (Fe3C). On the basis of these observations and thermodynamics, a mechanism for the formation of these particles and insights into CNT growth is proposed.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ebner, C. and Saam, W.F., Phys. Rev. Lett. 38, 1486 (1977).Google Scholar
2.Evans, R. and Tarazona, P., Phys. Rev. Lett. 52, 557 (1984).Google Scholar
3.Nakanishi, H. and Fisher, M.E., J. Chem. Phys. 78, 3279 (1983).Google Scholar
4.Iijima, S., Nature (London) 354, 56 (1991).Google Scholar
5.Ajayan, P.M., Ebbesen, T.W., Ichihashi, T., Iijima, S., Tamigaki, K., and Hiuri, H., Nature (London) 362, 522 (1993).Google Scholar
6.Tsang, S.C., Chen, Y.K., Harris, P.J.F., and Green, M.L.H., Nature (London) 72, 159 (1994).Google Scholar
7.Guerret-Plecourt, C., Bouar, Y. Le, Loiseau, A., and Pascard, H., Nature (London) 372, 761 (1994).Google Scholar
8.Sloan, J., Cook, J., Chu, A., Zwiefka-Sibley, M., Green, M.L.H., and Hutchison, J.L., J. Solid State Chem. 140, 83 (1998).Google Scholar
9.Meyer, R.R., Sloan, J., Dunim-Borkowski, R.E., Kirkland, A.I., Novotmy, M.C., Bailey, S.R., Hutchison, J.L., and Green, M.L.H., Science 289, 1324 (2000).Google Scholar
10.Koga, K., Gao, G.T., Tanaka, H., and Zeng, X.C., Nature (London) 412, 802 (2001).Google Scholar
11.Kiang, C.H., Endo, M., Ajayan, P.M., Dresselhaus, G., Dresselhaus, M.S., Phys. Rev. Lett. 81, 1869 (1998).Google Scholar
12.Kukovistsky, E.F., L’vov, S.G., Sainov, N.A., Chem. Phys. Lett. 317, 65 (2000).Google Scholar
13.Kanzow, H. and Ding, A., Phys. Rev. B 60, 11180 (1999).Google Scholar
14.Gorbunov, A., Jost, O., Pompe, W., and Graff, A., Carbon 40, 113 (2002).Google Scholar
15.Gavillet, J., Loiseau, A., Journet, C., Willaime, F., Ducastelle, F., and Charlier, J.C., Phys. Rev. Lett. 87, 275504 (2001).Google Scholar
16.Couchman, P.R. and Jesser, W.A., Nature (London) 269, 481 (1977).Google Scholar
17.Navascues, G. and Tarazona, P., Mol. Phys. 62, 497 (1987).Google Scholar
18.Buffat, P. and Borel, J., Phys. Rev. A 13, 2287 (1976).Google Scholar
19.Krivoruchko, P. and Zaikovskii, V.I., Mendeleev Commun. 8, 97 (1998).Google Scholar
20.Sacco, A., Thacker, P., Chang, T.N., and Chiang, A.T.S., J. Catal. 85, 224 (1984).Google Scholar
21.Sears, G.W. and Hudson, J.B., J. Chem. Phys. 39, 2380 (1963).Google Scholar
22.Thomas, J.M. and Walker, P.L., Jr., J. Chem. Phys. 41, 587 (1964).Google Scholar
23.Krivoruchko, P., Zaikovskii, V.I., and Zamaraev, K.I., Dokl. Akad. Nauk 329, 744 (1993).Google Scholar
24.Hochman, R.F., Electrochem. Soc. Inc. Proc. 77, 715 (1976).Google Scholar
25.Grabke, H.J., Mater. Corros. 49, 303 (1998).Google Scholar
26.Schneider, A., Corros. Sci. 44, 2353 (2002).Google Scholar
27.Bokx, P.K. De, Kock, A.J.H.M., Boellaard, E., Klop, W., and Geus, J.W., J. Catal. 96, 454 (1985).Google Scholar
28.Alstrup, I., J. Catal. 109, 241 (1988).Google Scholar
29.Wong, E.W., Sheehan, P.E., and Lieber, C.M., Science 277, 1971 (1997).Google Scholar
30.Popov, V.N. and Doren, V.E.V., Phys. Rev. B 61, 3078 (2000).Google Scholar
31.Maniwa, Y., Fujiwara, R., Kira, H., Tou, H., Nishibori, E., Takata, M., Sakata, M., Fujiwara, A., Zhao, X., Iijima, S., and Amdo, Y., Phys. Rev. B 64, 073105 (2001).Google Scholar
32.Osetsky, Y.N. and Serra, A., Phys. Rev. B 57, 755 (1998).Google Scholar
33.Morozov, P., Mirzayev, D.A., and Shteynberg, M.M., Fiz. Met. Metalloved. 32, 1290 (1971).Google Scholar