Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-19T10:40:20.275Z Has data issue: false hasContentIssue false

[NZP], NaZr2P3O12-type materials for protection of carbon-carbon composites

Published online by Cambridge University Press:  31 January 2011

Dinesh K. Agrawal
Affiliation:
Intercollege Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Girish Harshé
Affiliation:
Intercollege Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Else Breval
Affiliation:
Intercollege Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Rustum Roy
Affiliation:
Intercollege Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Get access

Abstract

Carbon-carbon composites, if not suitably protected, suffer from the problem of oxidation of the surface in normal atmospheres at temperatures above 350 °C. For this reason they need to be protected from oxidizing environments by either using an impermeable coating, or using a sacrificial protective coating of a suitable material, and/or doping of an oxidation inhibitor in the carbon. In this study we have used a new family of materials with tailorable thermal expansion characteristics, namely, the [NZP] family as the materials for developing a suitable coating material for C-C composites. The candidates selected for matching thermal expansion with that of carbon are Ca0.5Sr0.5Zr4P6O24, SrZr4P6O24, and Ba1.175Zr4P5.65Si0.35O24. They can be sintered in inert atmosphere without decomposition of the phases, and can be hot-pressed in inert atmosphere with C-C composites at 1250 °C without decomposition or chemical interaction. They are stable in the presence of carbon up to 1200 °C for at least a period of 4 h. They also do not show any weight loss after exposure to various temperatures up to 1200 °C for 4 h.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Westwod, M. E., Webster, J. D., Day, R. J., Hayes, F. H., and Taylor, R., Mater. Sci. 31 (4), 1389 (1996).CrossRefGoogle Scholar
2.Buckley, J. D., Am. Ceram. Bull. 67 (2), 364 (1988).Google Scholar
3.Strife, J. and Sheenan, J. E., Am. Ceram. Bull. 67 (2), 369 (1988).Google Scholar
4.Shapiro, I., Advanced Materials: Composites and Carbons (American Ceramics Society, Westerville, OH, 1971), p. 173.Google Scholar
5.McCormick, S. C., EMTL, Adv. Non-Metallic Materials, private communications (1986).Google Scholar
6.Goujard, S., Vandenbulcke, L., and Tawil, H., J. Mater. Sci. 29, 6212 (1994).CrossRefGoogle Scholar
7.Franc, O. and Macret, J. L., in Proceedings of ESA Symposium, ESTEC, Noordwilk, March 21–23, 1990.Google Scholar
8.Bentson, L. D., Price, R. J., Purdy, M. J., and Stover, E. R., U.S. Patent 5298 311 (Dec. 13, 1989).Google Scholar
9.Dietrich, H., Mater. Eng., 34 (1991).Google Scholar
10.Alamo, J. and Roy, R., J. Am. Ceram. Soc. 67 (5), C78 (1984).Google Scholar
11.Roy, R., Agrawal, D. K., Alamo, J., and Roy, R. A., Mater. Res. Bull. 19 (2), 471 (1984).CrossRefGoogle Scholar
12.Breval, E. and Agrawal, D. K., Brit. Ceram. Trans. 94 (1), 27 (1995).Google Scholar
13.Lenain, G., McKinstry, H. A., Kimaye, S. Y., and Woodword, A., Mater. Res. Bull. 19 (11), 1451 (1984).CrossRefGoogle Scholar
14.Scheetz, B. E., Agrawal, D. K., Breval, E., and Roy, R., Waste Management 14 (6), 489 (1994).CrossRefGoogle Scholar
15.Alamo, J. and Roy, R., J. Mater. Sci. 21 (4), 444 (1986).CrossRefGoogle Scholar
16.Limaye, S. Y., Agrawal, D. K., Roy, R., and Mehrotra, Y., J. Mater. Sci. 26 (1), 93 (1991).CrossRefGoogle Scholar
17.Hong, C. S., Agrawal, D. K., and McKinstry, H. A., J. Mater. Res. 9, 2398 (1994).CrossRefGoogle Scholar
18.Jiaxiang, Z., Kunhe, D., and Jinxian, W., VIth Int. Conf. Comp. Mats., ICCM and ECCM, edited by Matthews, F.L., Bukell, N.C.R., Hodgkinson, J. M., and Morton, J. (Elsevier Applied Sciences, New York, 1987), Vol. 4, p. 335.Google Scholar
19.Oota, T. and Yamai, I., J. Am. Ceram. Soc. 69 (1), 1 (1986).CrossRefGoogle Scholar
20.Goodenough, J. B., Hong, H. Y-P., and Kafalas, J. A., Mater. Res. Bull. 11 (2), 203 (1976).CrossRefGoogle Scholar
21.Breval, E., McKinstry, H. A., and Agrawal, D. K., Brit. Ceram. Trans. 93 (6), 239 (1994).Google Scholar
22.Hong, H. Y-P., Mater. Res. Bull. 11 (2), 173 (1976).CrossRefGoogle Scholar
23.Hagman, L. and Kierkegaard, P., Acta Chem. Scand. 22 (6), 1822 (1968).CrossRefGoogle Scholar
24.Huang, C-Y., Agrawal, D. K., and McKinstry, H. A., J. Mater. Sci. 9 (8), 2005 (1994).Google Scholar
25.Agrawal, D. K., Hirshé, G., and Breval, E., private communications.Google Scholar