Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-27T01:06:42.863Z Has data issue: false hasContentIssue false

Numerical study on the measurement of thin film mechanical properties by means of nanoindentation

Published online by Cambridge University Press:  31 January 2011

Xi Chen
Affiliation:
Division of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
Joost J. Vlassak*
Affiliation:
Division of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
*
a)Address all correspondence to this author.vlassak@esag.harvard.edu
Get access

Abstract

Nanoindentation is a technique commonly used for measuring thin film mechanical properties such as hardness and stiffness. In this study, we used the finite element method to investigate the effect of substrate and pileup on hardness and stiffness measurements of thin film systems. We define a substrate effect factor and construct a map that may be useful in the interpretation of indentation measurements when it is not possible to make indentations shallow enough to avoid the influence of the substrate on the measurements. A new technique for measuring mechanical properties of thin films by nanoindentation is suggested at the end of this article.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Doerner, M.F. and Nix, W.D., J. Mater. Res. 1, 601 (1986).CrossRefGoogle Scholar
2Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
3Tsui, T.Y., Vlassak, J.J., and Nix, W.D., J. Mater. Res. 14, 2196 (1999).CrossRefGoogle Scholar
4Tsui, T.Y., Vlassak, J.J., and Nix, W.D., J. Mater. Res. 14, 2204 (1999).CrossRefGoogle Scholar
5Standard Test Method for Vickers Hardness of Metallic Materials (American Society for Testing and Materials, West Con-shohocken, PA, 1987).Google Scholar
6Vlassak, J.J. and Nix, W.D., Philos. Mag. A 67, 1045 (1993).CrossRefGoogle Scholar
7Vlassak, J.J. and Nix, W.D., J. Mech. Phys. Solids 42, 1223 (1994).CrossRefGoogle Scholar
8Johnson, K.L., Contact Mechanics (Cambridge University Press, Cambridge, 1985).CrossRefGoogle Scholar
9King, R.B., Int. J. Solids Struct. 23, 1657 (1987).CrossRefGoogle Scholar
10Yu, H.Y., Sanday, S.C., and Rath, B.B., J. Mech. Phys. Solids 38, 745 (1990).CrossRefGoogle Scholar
11Gao, H., Chiu, C-H., and Lee, J., Int. J. Solids Struct. 29, 2471 (1992).Google Scholar
12Larsen, T.A. and Simo, J.C., J. Mater. Res. 7, 618 (1992).CrossRefGoogle Scholar
13Tsui, T.Y., Oliver, W.C., and Pharr, G.M., in Thin Films: Stresses and Mechanical Properties VI, edited by Gerberich, W.W., Gao, H., Sundgren, J-E., and Baker, S.P. (Mater. Res. Soc. Symp. Proc. 436, Pittsburgh, PA, 1996), p. 207.Google Scholar
14Tsui, T.Y., Ross, C.A., and Pharr, G.M., in Materials Reliability in Microelectronics VII, edited by Clement, J.J., Keller, R.R., Krisch, K.S., Sanchez, J.E. Jr., and Suo, Z. (Mater. Res. Soc. Symp. Proc. 473, Pittsburgh, PA, 1997), p. 51.Google Scholar
15Hay, J.C. and Pharr, G.M., in Thin Films: Stresses and Mechanical Properties VII, edited by Cammarato, R.C., Nastasi, M.A., Busso, E.P., and Oliver, W.C. (Mater. Res. Soc. Symp. Proc. 505, Warrendale, PA, 1998), p. 71.Google Scholar
16Bhattacharya, A.K. and Nix, W.D., Int. J. Solids Structures 24, 1287 (1988).CrossRefGoogle Scholar
17McGurk, M.R., Chandler, H.W., Twigg, P.C., and Page, T.F., Surf. Coat. Technol. 68, 576 (1994).CrossRefGoogle Scholar
18McGurk, M.R. and Page, T.F., Surf. Coat. Technol. 92, 87 (1997).CrossRefGoogle Scholar
19Korsunsky, A.M., McGurk, M.R., Bull, S.J., and Page, T.F., Surf. Coat. Technol. 99, 171 (1998).CrossRefGoogle Scholar
20Mesarovic, S.D. and Fleck, N.A., Proc. R. Soc. Lond. 455, 2707 (1999).CrossRefGoogle Scholar
21 Hibbit, Karlsson and Sorenson Inc., ABAQUS Version 5.8 User’s Manual (Pawtucket, RI, 1999).Google Scholar
22McElhaney, K.W., Vlassak, J.J., and Nix, W.D., J. Mater. Res. 13, 1300 (1998).CrossRefGoogle Scholar
23Harding, J.W. and Sneddon, I.N., Proc. Cambridge Philos. Soc. 14, 16 (1945).CrossRefGoogle Scholar
24Hay, J.C., Bolshakov, A., and Pharr, G.M., J. Mater. Res. 14, 2296 (1999).CrossRefGoogle Scholar
25Bhadra, R., Grimsditch, M., Schuller, I.K., and Nizzoli, F., Phys. Rev. B39, 12456 (1989).CrossRefGoogle Scholar
26Beghi, M.G., Bottani, C.E., Ossi, P.M., Lafford, T.A., and Tanner, B.K., J. Appl. Phys. 81, 672 (1997).CrossRefGoogle Scholar
27Kalkman, A.J., Verbruggen, A.H., Janssen, G.C.A.M., and Groen, F.H., Rev. Sci. Instrum. 70, 4026 (1999).CrossRefGoogle Scholar
28Kalkman, A.J., Verbruggen, A.H., and Janssen, G.C.A.M., Appl. Phys. Lett. 78, 2673 (2001).CrossRefGoogle Scholar