Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-28T13:42:16.858Z Has data issue: false hasContentIssue false

Nucleation of an intermetallic at thin-film interfaces: VSi2 contrasted with Al3Ni

Published online by Cambridge University Press:  31 January 2011

E. Ma
Affiliation:
The University of Michigan, Ann Arbor, Michigan 48109-2104
L.A. Clevenger
Affiliation:
IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598
C.V. Thompson
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Get access

Abstract

We analyze the formation of VSi2 at the amorphous-vanadium-silicide/amorphous-Si interface by linear-heating and isothermal calorimetry, and cross-sectional transmission electron microscopy. We show evidence that indicates sporadic VSi2 nucleation with a steady-state nucleation rate after a transient period. The results are contrasted with those obtained for Al2Ni nucleating at the polycrystalline-Al/polycrystalline-Ni interface, where the kinetics appears to be controlled by growth of a fixed number of nuclei at quickly consumed preferred nucleation sites.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Mayer, J. W. and Lau, S. S., Electronic Materials Science (Macmillan, New York, 1990).Google Scholar
2.Nicolet, M-A. and Lau, S. S., in VLSI Electronics Microstructure Science, edited by Einspruch, N. G. and Larrabee, G. B. (Academic Press, New York, 1983).Google Scholar
3.Johnson, W. L., Prog. Mater. Sci. 30, 81 (1986).CrossRefGoogle Scholar
4.d'Heurle, F. M., J. Mater. Res. 3, 167 (1988).CrossRefGoogle Scholar
5.Coffey, K. R., Clevenger, L. A., Barmark, K., Rudman, D. A., and Thompson, C. V., Appl. Phys. Lett. 55, 852 (1989).CrossRefGoogle Scholar
6.Thompson, C. V., Clevenger, L. A., DeAvillez, R. R., Ma, E., and Miura, H., in Thin Film Structures and Phase Stability, edited by Clemens, B. M. and Johnson, W. L. (Mater. Res. Soc. Symp. Proc. 187, Pittsburgh, PA, 1990), p. 61.Google Scholar
7.Vredenberg, A. M., Westendorp, J. F. M., Saris, F. W., van der Pers, N. M., and de Keijser, Th. H., J. Mater. Res. 1, 774 (1986).CrossRefGoogle Scholar
8.Meng, W. J., Nieh, C. W., Ma, E., Fultz, B., and Johnson, W. L., Mater. Sci. Eng. 97, 87 (1988).CrossRefGoogle Scholar
9.Clevenger, L. A. and Thompson, C. V., J. Appl. Phys. 67, 1325 (1990).CrossRefGoogle Scholar
10.Clevenger, L. A., Thompson, C. V., DeAvillez, R. R., and Ma, E., J. Vac. Sci. Technol. A8, 1566 (1990).CrossRefGoogle Scholar
11.Clevenger, L. A., Thompson, C. V., Judas, A., and Tu, K. N., in First MRS Int. Meeting Adv. Mater., edited by Ohno, T. and Yamamoto, R. (Mater. Res. Soc. Symp. Proc. IMAM-10, Pittsburgh, PA, 1989), p. 431.Google Scholar
12.Ma, E., Thompson, C. V., and Clevenger, L. A., J. Appl. Phys. 69, 2211 (1991).CrossRefGoogle Scholar
13.Ma, E., Thompson, C. V., and Clevenger, L. A., in Kinetics of Phase Transformations, edited by Thompson, M. O., Aziz, M. J., and Stephenson, G. B. (Mater. Res. Soc. Symp. Proc. 205, Pittsburgh, PA, 1991).Google Scholar
14.Psaras, P. A., Eizenberg, M., and Tu, K. N., J. Appl. Phys. 56, 3439 (1984).CrossRefGoogle Scholar
15.Christian, J. W., in The Theory of Transformations in Metals and Alloys, 2nd ed. (Pergamon Press, Oxford, 1975).Google Scholar
16.Kelton, K. F., Greer, A. L., and Thompson, C. V., J. Chem. Phys. 79, 6261 (1983).CrossRefGoogle Scholar
17.Thompson, C. V., Greer, A. L., and Spaepen, F., Acta Metall. 31, 1883 (1983).CrossRefGoogle Scholar
18.Boswell, P. G., J. Thermal Anal. 18, 353 (1980).CrossRefGoogle Scholar
19.Ma, E., Nicolet, M-A., and Natan, M., J. Appl. Phys. 65, 2703 (1989).CrossRefGoogle Scholar
20.Heald, S. M. and Barrera, E. V., J. Mater. Res. 6, 935 (1991).CrossRefGoogle Scholar