Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-07-01T04:41:48.944Z Has data issue: false hasContentIssue false

Novel titanium foam for bone tissue engineering

Published online by Cambridge University Press:  31 January 2011

C. E. Wen
Affiliation:
Institute for Structural and Engineering Materials, National Institute of Advanced Industrial Science and Technology (AIST), 2266–98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya 463–8560, Japan
Y. Yamada
Affiliation:
Institute for Structural and Engineering Materials, National Institute of Advanced Industrial Science and Technology (AIST), 2266–98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya 463–8560, Japan
K. Shimojima
Affiliation:
Institute for Structural and Engineering Materials, National Institute of Advanced Industrial Science and Technology (AIST), 2266–98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya 463–8560, Japan
Y. Chino
Affiliation:
Institute for Structural and Engineering Materials, National Institute of Advanced Industrial Science and Technology (AIST), 2266–98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya 463–8560, Japan
H. Hosokawa
Affiliation:
Institute for Structural and Engineering Materials, National Institute of Advanced Industrial Science and Technology (AIST), 2266–98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya 463–8560, Japan
M. Mabuchi
Affiliation:
Institute for Structural and Engineering Materials, National Institute of Advanced Industrial Science and Technology (AIST), 2266–98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya 463–8560, Japan
Get access

Abstract

Titanium foams fabricated by a new powder metallurgical process have bimodal pore distribution architecture (i.e., macropores and micropores), mimicking natural bone. The mechanical properties of the titanium foam with low relative densities of approximately 0.20–0.30 are close to those of human cancellous bone. Also, mechanical properties of the titanium foams with high relative densities of approximately 0.50–0.65 are close to those of human cortical bone. Furthermore, titanium foams exhibit good ability to form a bonelike apatite layer throughout the foams after pretreatment with a simple thermochemical process and then immersion in a simulated body fluid. The present study illustrates the feasibility of using the titanium foams as implant materials in bone tissue engineering applications, highlighting their excellent biomechanical properties and bioactivity.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Williams, D.F., in Titanium in Medicine, edited by Brunette, D.M., Tengvall, P., Textor, M., and Thomsen, P. (Springer-Verlag, Heidelberg, Germany, 2001), p. 13.CrossRefGoogle Scholar
2.Hanawa, T., in The Bone-Biomaterial Interface, edited by Davies, J.E. (University of Toronto Press, 1991), p. 49.Google Scholar
3.Kokubo, T., Sawada, K., Hirakawa, K., Shimizu, C., Takamatsu, T., and Hirasawa, Y., J. Biomed. Mater. Res. 45, 363 (1999).3.0.CO;2-3>CrossRefGoogle Scholar
4.Kokubo, T., Thermochim. Acta 280/281, 479 (1996).CrossRefGoogle Scholar
5.Wang, K., Gustavson, L., and Dumbleton, J., in Beta Titanium in the 1990’s, edited by Eylon, D., Boyer, R.R., and Koss, D.A. (TMS, Warrendale, PA, 1993), pp. 4960.Google Scholar
6.Wang, K., Gustavson, L., and Dumbleton, J., in Titanium ’92 Science and Technology, edited by Froes, F.H. and Caplan, I. (TMS, Warrendale, PA, 1992), pp. 26972704.Google Scholar
7.Steinemann, S.G., Ma¨usli, P.A., Szmukler-Moncler, S., Pohler, O., Hintermann, H.E., and Perren, S.M., in Titanium ’92 Science and Technology, edited by Froes, F.H. and Caplan, I. (TMS, Warrendale, PA, 1993), pp. 26892696.Google Scholar
8.Okazaki, Y., Ito, Y., Ito, A., and Tateishi, T., Mater. Trans. JIM 34, 1217 (1993).CrossRefGoogle Scholar
9.Kovacs, P. and Davidson, J.A., in Titanium ’92 Science and Technology, edited by Froes, F.H. and Caplan, I. (TMS, Warrendale, PA, 1993), pp. 27052712.Google Scholar
10.Mishra, A.K., Davidson, J.A., Kovacs, P., and Poggie, R.A., in Beta Titanium in the 1990’s, edited by Eylon, D., Boyer, R.R., and Koss, D.A. (TMS, Warrendale, PA, 1993), pp. 6172.Google Scholar
11.Niinomi, M., Kuroda, D., Fukunaga, K., Morinaga, M., Kato, Y., Yashiro, T., and Suzuki, A., Mater. Sci. Eng. A 263, 193 (1999).CrossRefGoogle Scholar
12.Ahmed, T., Long, M., Silvestri, J., Ruiz, C., and Rack, H.J., presented at the 8th World Titanium Conference (Birmingham, U.K., October, 1995).Google Scholar
13.Sikavitsas, V.I., Temenoff, J.S., and Mikos, A.G., Biomater. 22, 2581 (2001).CrossRefGoogle Scholar
14.Athanasiou, K.A., Agrawal, C.M., Barber, F.A., and Burkhart, S.S., Arthroscopy 14, 726 (1998).CrossRefGoogle Scholar
15.Gogolewski, S., Injury 31, 28 (2000).CrossRefGoogle Scholar
16.Murphy, W.L., Kohn, D.H., and Mooney, D.J., J. Biomed. Mater. Res. 50, 50 (2000).3.0.CO;2-F>CrossRefGoogle Scholar
17.Gomes, M.E., Ribeiro, A.S., Malafaya, P.B., Reis, R.L., and Cunha, A.M., Biomater. 22, 883 (2001).CrossRefGoogle Scholar
18.Dong, J., Kojima, H., Uemura, T., Kikuchi, M., Tateishi, T., and Tananka, J., J. Biomed. Mater. Res. 57, 208 (2001).3.0.CO;2-N>CrossRefGoogle Scholar
19.Hutmacher, D.W., Biomater. 21, 2529 (2000).CrossRefGoogle Scholar
20.Ripamonti, U. and Reddi, A.H., Critical Reviews in Oral Biology and Medicine 8, 154 (1997).CrossRefGoogle Scholar
21.Lawless, M.W., Laughlin, R.T., Kerpsack, J.M., and Pisut, D., J. Musculoskeletal Res. 4, 129 (2000).Google Scholar
22.Kienapfel, H., Sprey, C., Wilke, A., and Griss, P., J. Arthroplasty 14, 355 (1999).CrossRefGoogle Scholar
23.Chang, Y.S., Oka, M., Kobayashi, M., Gu, H.O., Ikada, Y., Li, Z.L., and Nakamura, T., Biomater. 17, 1141 (1996).CrossRefGoogle Scholar
24.Seah, K.H.W., Thampuran, R., and Teoh, S.H., Corros. Sci. 40, 547 (1998).CrossRefGoogle Scholar
25.Zardiakas, L.D., Parsell, D.E., Dillon, L.D., Mitchell, D.W., Nunnery, L.A., and Poggie, R., J. Biomed. Mater. Res. 58, 180 (2001).3.0.CO;2-5>CrossRefGoogle Scholar
26.Magliulo, G., D’Amico, R., and Forino, M., J. Otolaryngol. 30, 330 (2001).Google Scholar
27.Hartwig, C.H., Reha´k, L., Milz, S., Benner, K.U., Ku¨sswetter, W., and Willmann, G., Biomed. Technol. 40, 99 (1995).CrossRefGoogle Scholar
28.Elema, H., Groot, J.H. De, Nijenhuis, A.J., Pennings, A.J., Veth, R.P.H., Klompmaker, J., and Jansen, H.W.B., Colloid Polymer Sci. 268, 1082 (1990).CrossRefGoogle Scholar
29.Yamada, Y., Shimojima, K., Sagaguchi, Y., Mabuchi, M., Nakamura, M., Asahina, T., Mukai, T., Kanahashi, H., and Higashi, K., Adv. Eng. Mater. 2, 184 (2000).3.0.CO;2-W>CrossRefGoogle Scholar
30.Wen, C.E., Mabuchi, M., Yamada, Y., Shimojima, K., Chino, Y., and Asahina, T., Scripta Mater. 45, 1147 (2001).CrossRefGoogle Scholar
31.Kim, H.M., Miyaji, F., Kokubo, T., and Nakamura, T., J. Biomed. Mater. Res. 32, 409 (1996).3.0.CO;2-B>CrossRefGoogle Scholar
32.Kokubo, T., Kushitani, H., Sakka, S., Kitsugi, T., and Yamamuro, T., J. Biomed. Mater. Res. 24, 721 (1990).CrossRefGoogle Scholar
33.Chang, Y.S., Oka, M., Nakamura, T., and Gu, H.O., J. Biomed. Mater. Res. 30, 117 (1996).3.0.CO;2-L>CrossRefGoogle Scholar
34.Zhang, C., Wang, J.X., and Zhang, X.D., J. Biomed. Mater. Res. 52, 354 (2000).3.0.CO;2-L>CrossRefGoogle Scholar
35.Evans, F.G., Artif. Limbs 13, 37 (1969).Google Scholar
36.Morscher, E.W. and Dick, W., Clin. Orthop. Rel. Res. 176, 77 (1986).Google Scholar
37.Heimke, G., Kolbe, R.J., and Latour, J.R., J. Mater. Sci. Med. 3, 204 (1992).CrossRefGoogle Scholar
38.Mukai, T., Kanahashi, H., Yamada, Y., Shimojima, K., Mabuchi, M., Nieh, T.G., and Higashi, K., Scripta Mater. 41, 365 (1999).CrossRefGoogle Scholar
39.Yamada, Y., Shimojima, K., Sakaguchi, Y., Mabuchi, M., Nakamura, M., Asahina, T., Mukai, T., Kanahashi, H., and Higashi, K., Mater. Sci. Eng. A 280, 225 (2000).CrossRefGoogle Scholar
40.Wen, C.E., Yamada, Y., Shimojima, K., Mabuchi, M., Nakamura, M., Asahina, T., Aizawa, T., and Higashi, K., Mater. Trans. JIM 41, 1192 (2000).CrossRefGoogle Scholar
41.Nakajima, H., Hyun, S.K., Ohashi, K., Ota, K., and Murakami, K., Colloids and Surfaces A: Physicochem. Eng. Aspects 179, 209 (2001).CrossRefGoogle Scholar
42.Nieh, T.G., Higashi, K., and Wadsworth, J., Mater. Sci. Eng. A 283, 105 (2000).CrossRefGoogle Scholar
43.Gibson, L.G. and Ashby, M.F., Cellular Solids: Structure and Properties, 2nd ed. (Cambridge University Press, Cambridge, U.K., 1997), pp. 429452.CrossRefGoogle Scholar
44.Long, M. and Rack, H.J., Biomater. 19, 1621 (1998).CrossRefGoogle Scholar
45.Uchida, M., Kim, H.M., Kokubo, T., and Nakamura, T., J. Am. Ceram. Soc. 84, 2969 (2001).CrossRefGoogle Scholar
46.Ratner, B.D., J. Biomed. Mater. Res. Appl. Biomater. 21, 59 (1987).Google Scholar
47.Hanawa, T., in The Bone-Biomaterial Interface, edited by Davies, J.E. (University of Toronto Press, Toronto, Canada, 1991), pp. 4961.Google Scholar