Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T16:09:31.218Z Has data issue: false hasContentIssue false

Near-surface stoichiometry of high temperature superconducting YBaCuO thin films

Published online by Cambridge University Press:  31 January 2011

A. J. Drehman
Affiliation:
Solid State Sciences Directorate, Rome Air Development Center, Hanscom AFB, Massachusetts 01731
M. W. Dumais
Affiliation:
Solid State Sciences Directorate, Rome Air Development Center, Hanscom AFB, Massachusetts 01731
J. A. Horrigan
Affiliation:
Solid State Sciences Directorate, Rome Air Development Center, Hanscom AFB, Massachusetts 01731
G-C. Wang
Affiliation:
Department of Physics, Rensselaer Polytechnic Institute, Troy, New York 12180-3590
Y-F. Liew
Affiliation:
Department of Physics, Rensselaer Polytechnic Institute, Troy, New York 12180-3590
Get access

Abstract

The surface morphology and near-surface chemical composition of high temperature superconducting Y–Ba–Cu–O thin films have been studied by Scanning Electron Microscopy (SEM) and Auger Electron Spectroscopy (AES) depth profiling. These films were fabricated on SrTiO3 substrates by RF diode sputter deposition and subsequent furnace annealing in oxygen. The chemical composition at and near the surface of thin films was found to differ from the bulk composition. At about 500 Å below the surface the Y, Ba, and Cu stoichiometry, as determined by AES, gradually approach that of the film interior. These results suggest that, for furnace annealed films, there may exist a minimum deposited Y–Ba–Cu–O film thickness in which superconductivity is possible. It was also found that the calculated copper concentration determined by AES during depth profiling is significantly lower than its actual value.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Nishikawa, Osamu and Nagia, Masaharu, Phys. Rev. B 37, 3685 (1988).CrossRefGoogle Scholar
2Babcock, S. E., Kelly, T. F., Lee, P. J., Seuntjens, J. M., Lavanier, L. A., and Larbalestier, D. C., Physica C 152, 25 (1988).CrossRefGoogle Scholar
3Cooke, D. W., Jahan, M. S., Smith, J. L., Maez, M. A., Hults, W. L., Raistrick, I. D., Peterson, D. E., O'Rourke, J. A., Richardson, S. A., Doss, J. D., Gray, E. R., Rusnak, B., Lawrence, G. P., and Fortgang, C., Appl. Phys. Lett. 54, 960 (1989).CrossRefGoogle Scholar
4Carini, J., Drabeck, L., and Gruner, G., Modern Phys. Lett. B 3, 5 (1989).CrossRefGoogle Scholar
5Kwasnick, R. F., Luborsky, F. E., Hall, E. L., Garbauskas, M. F., Borst, K., and Curran, M. J., J. Mater. Res. 4 (2), 257 (1989) and references therein.CrossRefGoogle Scholar
6Hamilton, J. C., Phys. Rev. Lett. 42, 989 (1979).CrossRefGoogle Scholar
7Miedema, A. R., Z. Metallkd. 69, 455 (1978); A. R. Miedema, Philips Tech. Rev. 30, 217 (1976); R. Boom, F. R. deBoer, and A. R. Miedema, J. Less-Common Met. 46, 271 (1976).Google Scholar
8Cota, L., Garza, L. Morales de la, Hirata, G., Martinez, L., Orozco, E., Carrillo, E., Mendoza, A., Albarran, J. L., Fuentes-Maya, J., Boldu, J. L., Perez-Ramirez, J. G., Perez, R., Gasga, J. Reyes, Avalos, M., and Jose-Yacaman, M., J. Mater. Res. 3, 417 (1988).CrossRefGoogle Scholar
9Pavuna, D., Baer, W., Berger, H., Mathieu, H. J., Vogel, A., Schmidt, M., Gasparov, V., Affronte, M., Vasey, F., and Reinhart, F. K., Physica C 153–155, 1449 (1988).CrossRefGoogle Scholar