Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-07-04T22:40:51.851Z Has data issue: false hasContentIssue false

The nature of [001] tilt grain boundaries in YBa2Cu3O7−x

Published online by Cambridge University Press:  31 January 2011

Frank W. Gayle
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Science and Technology, Gaithersburg, Maryland 20899
Debra L. Kaiser
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Science and Technology, Gaithersburg, Maryland 20899
Get access

Abstract

Fifty-two faceted grain boundary segments ([001] tilt boundaries) in clusters of bulk-scale YBa2Cu3O7−x crystals having coincident c-axes were characterized by optical microscopy techniques. Grain boundary orientations were widely distributed. All grain boundaries, except those far from the symmetric condition and those with {110} facets, exhibited well-developed matching of the twin domains across the boundary. It is suggested that this newly reported phenomenon of twin pattern matching occurs due to a local coordination of the tetragonal → orthorhombic transformation strain across grain boundaries and may be beneficial with regard to electrical transport in highly textured polycrystalline material.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Dimos, D., Chaudhari, P., Mannhart, J., and LeGoues, F. K., Phys. Rev. Lett. 61, 219 (1988); D. Dimos, P. Chaudhari, and J. Mannhart, Phys. Rev. B 41, 4038 (1990).Google Scholar
2Babcock, S. E., Cai, X. Y., Kaiser, D. L., and Larbalestier, D. C., Nature 347, 167 (1990).CrossRefGoogle Scholar
3Kaiser, D. L., Holtzberg, F., Scott, B. A., and McGuire, T. R., Appl. Phys. Lett. 51, 1040 (1987); D. L. Kaiser, F. Holtzberg, M. F. Chisholm, and T. K. Worthington, J. Cryst. Growth 85, 593 (1987).Google Scholar
4Jorgensen, J. D., Beno, M. A., Hinks, D. G., Soderholm, L., Volin, K. J., Hitterman, R. L., Grace, J. D., Schuller, I. K., Segre, C. U., Zhang, K., and Kleefisch, M. S., Phys. Rev. B 36, 3608 (1987).Google Scholar
5McGuire, T. R., Holtzberg, F., Kaiser, D. L., Shaw, T. M., and Shinde, S., J. Appl. Phys. 63, 4167 (1988).CrossRefGoogle Scholar
6Vaudin, M. D. (unpublished research).Google Scholar
7 Articles in J. de Phys. 46, Colloque C4 (1985).Google Scholar
8Schmid, H., Burkhardt, E., Walker, E., Brixel, W., Clin, M., Rivera, J-P., Jorda, J-L., François, M., and Yvon, K., Z. Phys. BCondensed Matter 72, 305 (1988).Google Scholar
9Sarikaya, M., Thiel, B. L., Aksay, I. A., Weber, W. J., and Frydrych, W. S., J. Mater. Res. 2, 736 (1987).CrossRefGoogle Scholar
10Shaw, T. M., Shinde, S. L., Dimos, D., Cook, R. F., Dun-combe, P. R., and Kroll, C., J. Mater. Res. 4, 248 (1989)CrossRefGoogle Scholar
11Kaiser, D. L., Gayle, F. W., Swartzendruber, L. J., and Roth, R. S., J. Mater. Res. 4, 745 (1989).CrossRefGoogle Scholar
12Wolf, D., J. de Phys. 46, C4197 (1985).CrossRefGoogle Scholar
13Smith, D. A., Chisholm, M. F., and Clabes, J., Appl. Phys. Lett. 53, 2344 (1988).CrossRefGoogle Scholar
14Roytburd, A., in High Temperature Superconductors: Fundamental Properties and Novel Materials Processing, edited by Christen, D. K.Narayan, J., and Schneemeyer, L. F. (Mater. Res. Soc. Symp. Proc.169, Pittsburgh, PA, 1990), p. 801Google Scholar
15Jin, S., Tiefel, T. H., Sherwood, R. C., Davis, M. E., van Diver, R. B., Kammlott, G. W., Fastnacht, R. A., and Keith, H. D., Appl. PhysLett. 52, 2074 (1988).Google Scholar
16Murakami, M., Morita, M., Doi, K., and Miyamoto, K., Jpn. J. Appl. Phys. 28, 1189 (1989).CrossRefGoogle Scholar