Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-24T12:02:12.634Z Has data issue: false hasContentIssue false

Nanostructured Gold Thin Films Prepared by Pulsed Laser Deposition

Published online by Cambridge University Press:  03 March 2011

Eric Irissou
Affiliation:
INRS-Énergie, Matériaux et Télécommunication, Varennes, Québec J3X 1S2, Canada
Boris Le Drogoff
Affiliation:
INRS-Énergie, Matériaux et Télécommunication, Varennes, Québec J3X 1S2, Canada
Mohammed Chaker
Affiliation:
INRS-Énergie, Matériaux et Télécommunication, Varennes, Québec J3X 1S2, Canada
Michel Trudeau
Affiliation:
Chimie et Matériaux, Institut de Recherche d’Hydro-Québec (IREQ), Varennes, Québec J3X 1S1, Canada
Daniel Guay*
Affiliation:
INRS-Énergie, Matériaux et Télécommunication, Varennes, Québec J3X 1S2, Canada
*
a)Address all correspondence to this author. e-mail: guay@inrs-emt.uquebec.ca
Get access

Abstract

A structural and morphological study of nanostructured gold thin films prepared by pulsed laser deposition in the presence of several inert background gases (Ar, He, and N2) and at various pressures (from 10 mTorr to 1 Torr) and target-to-substrate distances (from 1 to 10 cm) is presented. Structural and morphological analyses were undertaken using semiquantitative x-ray diffraction, scanning tunneling microscopy, and transmission electron microscopy. For each set of deposition conditions, the kinetic energy of the neutral gold species [Au(I)] present in the plasma plume was determined by time-of-flight emission spectroscopy and used to characterize the plasma dynamics. It is shown that all films exhibit a transition from highly [111] oriented to polycrystalline as the Au(I) kinetic energy decreases. The polycrystalline phase ratio is close to 0% for Au(I) kinetic energy larger than approximately 3.0 eV/atom and approximately 86 ± 10% for Au(I) kinetic energy smaller than approximately 0.30 eV/atom, irrespective of the background gas atmosphere. The mean crystallite size of both phases and the mean roughness of the films also follow a unique relation with the Au(I) kinetic energy, independently of the nature of the background gas, and nanocrystalline films with crystallite size as small as 12 nm are obtained for Au(I) kinetic energy smaller than 0.3 eV/atom.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Pulsed Laser Deposition of Thin Films, edited by Chrisey, D.B. and Hubler, G.K. (Wiley, New York, 1994).Google Scholar
2Lowndes, D.H., Geohegan, D.B., Puretzky, A.A., Norton, D.P.and Rouleau, C.M., Science 273, 898 (1996).CrossRefGoogle Scholar
3Geohegan, D.B.in Pulsed Laser Deposition of Thin Films, edited by Chrisey, D.B. and Hubler, G.K. (Wiley, New York, 1994), Chap. 5.Google Scholar
4Geohegan, D.B.and Puretzky, A.A., Appl. Phys. Lett. 67, 197 (1995).CrossRefGoogle Scholar
5Gonzalo, J., Afonso, C.N.and Madariaga, I., J. Appl. Phys. 81, 951 (1997).CrossRefGoogle Scholar
6Gonzalo, J., Vega, F.and Afonso, C.N., J. Appl. Phys. 77, 6588 (1995).CrossRefGoogle Scholar
7Kumuduni, W.K.A., Nakayama, Y., Nakata, Y., Okada, T.and Maeda, M., J. Appl. Phys. 74, 7510 (1993).CrossRefGoogle Scholar
8Yoshida, T., Takeyama, S., Yamada, Y.and Mutoh, K., Appl. Phys. Lett. 68, 1772 (1996).CrossRefGoogle Scholar
9Kim, H.S.and Kwok, H.S., Appl. Phys. Lett. 61, 2234 (1992).CrossRefGoogle Scholar
10Shen, W.P.and Kwok, H.S., Appl. Phys. Lett. 65, 17 (1994).Google Scholar
11Kwok, H.S., Kim, H.S., Kim, D.H., Shen, W.P., Sun, X.W.and Xiao, R.F., Appl. Surf. Sci. 109/110, 595 (1997).CrossRefGoogle Scholar
12Bennett, T.D., Grigoropoulos, C.P.and Krajnovich, D.J., J. Appl. Phys. 77, 849 (1995).CrossRefGoogle Scholar
13Zhang, X., Chu, S.S., Ho, J.R.and Grigoropoulos, C.P., Appl. Phys. A, 64, 545 (1997).CrossRefGoogle Scholar
14Irissou, E., Le Drogoff, B., Chaker, M.and Guay, D., Appl. Phys. Lett. 80, 1716 (2002).CrossRefGoogle Scholar
15Irissou, E., Le Drogoff, B., Chaker, M.and Guay, D., J. Appl. Phys. 94, 4796 (2003).CrossRefGoogle Scholar
16Gaarde, M.B., Zerne, R., Caiyan, L., Zhankui, J., Larsson, L.and Svanberg, S., Phys. Rev. A 50, 209 (1994).CrossRefGoogle Scholar
17Reichelt, K.and Lutz, H.O., J. Cryst. Growth 10, 103 (1971).CrossRefGoogle Scholar
18Chidsey, C.E.D., Loiacono, D.N., Sleator, T.and Nakahara, S., Surf. Sci. 200, 45 (1988).CrossRefGoogle Scholar
19Zei, M.S., Nakai, Y., Lehmpfuhl, G.and Kolb, D.M., J. Electroanal. Chem. 150, 201 (1983).CrossRefGoogle Scholar
20Haiss, W., Lackey, D., Sass, J.K.and Besocke, K.H., J. Chem. Phys. 95, 2193 (1991).CrossRefGoogle Scholar
21DeRose, J.A., Thundat, T., Nagahara, L.A.and Lindsay, S.M., Surf. Sci. 256, 102 (1991).CrossRefGoogle Scholar
22Uosaki, K., Shen, Y.and Kondo, T., J. Phys. Chem. 99, 14117 (1995).CrossRefGoogle Scholar
23Koslowski, B., Boyen, H.G., Wilderotter, C., Kastle, G., Ziemann, P., Wahrenberg, R.and Oelhafen, P., Surf. Sci. 475, 1 (2001).CrossRefGoogle Scholar
24Koo, T.Y., Lee, K.B., Jeong, Y.H.and Kang, K.Y., Jpn. J. Appl. Phys. 37, 2629 (1998).CrossRefGoogle Scholar
25Camposeo, A., Cervelli, F., Fuso, F., Allegrini, M.and Arimondo, E., Appl. Phys. Lett. 78, 2402 (2001).CrossRefGoogle Scholar
26Bagmut, A.G., Sov. Tech. Phys. Lett. 17, 444 (1991).Google Scholar
27Irissou, E., Denis, M.C., Chaker, M. and Guay, D. in Thin Solid Films, Submitted.Google Scholar
28Hu, C.W., Kasuya, A., Wawro, A., Horiguchi, N., Czajka, R., Nishina, Y., Saito, Y.and Fujita, H., Mater. Sci. Eng. A 217/218, 103 (1996).CrossRefGoogle Scholar
29Irissou, E., Dolbec, R., Le Drogoff, B., Rosei, F., El Khakani, M.A., Chaker, M.and Guay, D.(unpublished).Google Scholar