Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-23T06:38:56.929Z Has data issue: false hasContentIssue false

Nanoscale strength distribution in amorphous versus crystalline metals

Published online by Cambridge University Press:  31 January 2011

C.E. Packard
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
O. Franke
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
E.R. Homer
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
C.A. Schuh*
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
*
a)Address all correspondence to this author. e-mail: schuh@mit.edu This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr_policy This paper has been accepted as an Invited Feature Paper.
Get access

Abstract

Low-load nanoindentation can be used to assess not only the plastic yield point, but the distribution of yield points in a material. This paper reviews measurements of the so-called nanoscale strength distribution (NSD) on two classes of materials: crystals and metallic glasses. In each case, the yield point has a significant spread (10–50% of the mean normalized stress), but the origins of the distribution are shown to be very different in the two materials classes. In crystalline materials the NSD can arise from thermal fluctuations and is attended by significant rate and temperature dependence. In metallic glasses well below their glass-transition temperature, the NSD is reflective of fluctuations in the sampled structure and is not very sensitive to rate or temperature. Computer simulations using shear transformation zone dynamics are used to separate the effects of thermal and structural fluctuations in metallic glasses, and support the latter as dominating the NSD of those materials at low temperatures. Finally, the role of the NSD as a window on structural changes due to annealing or prior deformation is discussed as a direction for future research on metallic glasses in particular.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bahr, D.F., Vasquez, G.: Effect of solid solution impurities on dislocation nucleation during nanoindentation. J. Mater. Res. 20, 1947 (2005)CrossRefGoogle Scholar
2.Bahr, D.F., Wilson, D.E., Crowson, D.A.: Energy considerations regarding yield points during indentation. J. Mater. Res. 14, 2269 (1999)CrossRefGoogle Scholar
3.Lund, A.C., Hodge, A.M., Schuh, C.A.: Incipient plasticity during nanoindentation at elevated temperatures. Appl. Phys. Lett. 85, 1362 (2004)Google Scholar
4.Mason, J.K., Lund, A.C., Schuh, C.A.: Determining the activation energy and volume for the onset of plasticity during nanoindentation. Phys. Rev. B 73, 054102 (2006)CrossRefGoogle Scholar
5.Michalske, T.A., Houston, J.E.: Dislocation nucleation at nano-scale mechanical contacts. Acta Mater. 46, 391 (1998)CrossRefGoogle Scholar
6.Suresh, S., Nieh, T.G., Choi, B.W.: Nano-indentation of copper thin films on silicon substrates. Scr. Mater. 41, 951 (1999)CrossRefGoogle Scholar
7.Corcoran, S.G., Colton, R.J., Lilleodden, E.T., Gerberich, W.W.: Anomalous plastic deformation at surfaces: Nanoindentation of gold single crystals. Phys. Rev. B 55, 16057 (1997)CrossRefGoogle Scholar
8.Bei, H., Lu, Z.P., George, E.P.: Theoretical strength and the onset of plasticity in bulk metallic glasses investigated by nanoindentation with a spherical indenter. Phys. Rev. Lett. 93, 125504 (2004)Google Scholar
9.Packard, C.E., Schuh, C.A.: Initiation of shear bands near a stress concentration in metallic glass. Acta Mater. 55, 5348 (2007)Google Scholar
10.Wright, W.J., Saha, R., Nix, W.D.: Deformation mechanisms of the Zr40Ti14Ni10Cu12Be24 bulk metallic glass. Mater. Trans. 42, 642 (2001)CrossRefGoogle Scholar
11.Shi, Y.F., Falk, M.L.: Stress-induced structural transformation and shear banding during simulated nanoindentation of a metallic glass. Acta Mater. 55, 4317 (2007)CrossRefGoogle Scholar
12.Homer, E.R., Schuh, C.A.: Mesoscale modeling of amorphous metals by shear transformation zone dynamics. Acta Mater. 57, 2823 (2009)Google Scholar
13.Li, J., Van Vliet, K.J., Zhu, T., Yip, S., Suresh, S.: Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. Nature 418, 307 (2002)CrossRefGoogle ScholarPubMed
14.Van Vliet, K.J., Li, J., Zhu, T., Yip, S., Suresh, S.: Quantifying the early stages of plasticity through nanoscale experiments and simulations. Phys. Rev. B 67, 104105 (2003)Google Scholar
15.Franke, O., Durst, K., Goken, M.: Nanoindentation investigations to study solid solution hardening in Ni-based diffusion couples. J. Mater. Res. 24, 1127 (2009)CrossRefGoogle Scholar
16.Franke, O., Durst, K., Goken, M.: Microstructure and local mechanical properties of Pt-modified nickel aluminides on nickel-base superalloys after thermo-mechanical fatigue. Mater. Sci. Eng., A 467, 15 (2007)CrossRefGoogle Scholar
17.Tai, K., Dao, M., Suresh, S., Palazoglu, A., Ortiz, C.: Nanoscale heterogeneity promotes energy dissipation in bone. Nat. Mater. 6, 454 (2007)CrossRefGoogle ScholarPubMed
18.Tweedie, C.A., Anderson, D.G., Langer, R., Van Vliet, K.J.: Combinatorial material mechanics: High-throughput polymer synthesis and nanomechanical screening. Adv. Mater. 17, 2599 (2005)CrossRefGoogle Scholar
19.Constantinides, G., Chandran, K.S.R., Ulm, F.J., Van Vliet, K.J.: Grid indentation analysis of composite microstructure and mechanics: Principles and validation. Mater. Sci. Eng., A 430, 189 (2006)CrossRefGoogle Scholar
20.Zhao, J.C., Jackson, M.R., Peluso, L.A., Brewer, L.N.: A diffusion-multiple approach for mapping phase diagrams, hardness, and elastic modulus. JOM 54, 42 (2002)CrossRefGoogle Scholar
21.Schuh, C.A., Lund, A.C.: Application of nucleation theory to the rate dependence of incipient plasticity during nanoindentation. J. Mater. Res. 19, 2152 (2004)CrossRefGoogle Scholar
22.Schuh, C.A., Mason, J.K., Lund, A.C.: Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments. Nat. Mater. 4, 617 (2005)CrossRefGoogle ScholarPubMed
23.Packard, C.E., Homer, E.R., Al-Aqeeli, N., Schuh, C.A.: Cyclic hardening of metallic glasses under Hertzian contacts: Experiments and STZ dynamics simulations. Philos. Mag. 90, 1373 (2010)Google Scholar
24.Packard, C.E., Witmer, L.M., Schuh, C.A.: Hardening of a metallic glass during cyclic loading in the elastic range. Appl. Phys. Lett. 92, 171911 (2008)CrossRefGoogle Scholar
25.Fischer-Cripps, A.C.: Introduction to Contact Mechanics (Springer, New York 2000)Google Scholar
26.Hertz, H.: Miscellaneous Papers translated by D.E. Jones and G.A. Schott (Macmillan, London 1896)Google Scholar
27.Wo, P.C., Zuo, L., Ngan, A.H.W.: Time-dependent incipient plasticity in Ni3Al as observed in nanoindentation. J. Mater. Res. 20, 489 (2005)Google Scholar
28.Rajulapati, K.V., Biener, M.M., Biener, J., Hodge, A.M.: Temperature dependence of the plastic flow behavior of tantalum. Philos. Mag. Lett. 90, 35 (2010)CrossRefGoogle Scholar
29.Gerberich, W.W., Nelson, J.C., Lilleodden, E.T., Anderson, P., Wyrobek, J.T.: Indentation induced dislocation nucleation: The initial yield point. Acta Mater. 44, 3585 (1996)CrossRefGoogle Scholar
30.Biener, M.M., Biener, J., Hodge, A.M., Hamza, A.V.: Dislocation nucleation in bcc Ta single crystals studied by nanoindentation. Phys. Rev. B 76, 165422 (2007)CrossRefGoogle Scholar
31.Schuh, C.A., Nieh, T.G.: A survey of instrumented indentation studies on metallic glasses. J. Mater. Res. 19, 46 (2004)Google Scholar
32.Durst, K., Backes, B., Franke, O., Goken, M.: Indentation size effect in metallic materials: Modeling strength from pop-in to macroscopic hardness using geometrically necessary dislocations. Acta Mater. 54, 2547 (2006)Google Scholar
33.Njeim, E.K., Bahr, D.F.: Atomistic simulations of nanoindentation in the presence of vacancies. Scr. Mater. 62, 598 (2010)CrossRefGoogle Scholar
34.Shim, S., Bei, H., Miller, M.K., Pharr, G.M., George, E.P.: Effects of focused-ion-beam milling on the compressive behavior of directionally solidified micropillars and the nanoindentation response of an electropolished surface. Acta Mater. 57, 503 (2009)Google Scholar
35.Moser, B., Kuebler, J., Meinhard, H., Muster, W., Michler, J.: Observation of instabilities during plastic deformation by in-situ SEM indentation experiments. Adv. Eng. Mater. 7, 388 (2005)Google Scholar
36.Yoo, B.G., Kim, J.Y., Jang, J.I.: Influence of indenter geometry on the deformation behavior of Zr60Cu30Al10 bulk metallic glass during nanoindentation. Mater. Trans. 48, 1765 (2007)CrossRefGoogle Scholar
37.Schuh, C.A., Nieh, T.G.: A nanoindentation study of serrated flow in bulk metallic glasses. Acta Mater. 51, 87 (2003)Google Scholar
38.Wang, L., Song, S.X., Nieh, T.G.: Assessing plastic shear resistance of bulk metallic glasses under nanoindentation. Appl. Phys. Lett. 92, 3 (2008)Google Scholar
39.Yang, B., Nieh, T.G.: Effect of the nanoindentation rate on the shear band formation in an Au-based bulk metallic glass. Acta Mater. 55, 295 (2007)Google Scholar
40.Fischer-Cripps, A.C.: Nanoindentation (Springer, New York 2002)Google Scholar
41.Schuh, C.A., Nieh, T.G., Kawamura, Y.: Rate dependence of serrated flow during nanoindentation of a bulk metallic glass. J. Mater. Res. 17, 1651 (2002)CrossRefGoogle Scholar
42.Li, N., Liu, L., Chen, Q., Pan, J., Chan, K.C.: The effect of free volume on the deformation behaviour of a Zr-based metallic glass under nanoindentation. J. Phys. D: Appl. Phys. 40, 6055 (2007)CrossRefGoogle Scholar
43.Liu, Y., Zhang, T., Wei, B., Xing, D., Li, W., Zhang, L.: Effect of structural relaxation on deformation behaviour of Zr-based metallic glass. Chin. Phys. Lett. 23, 1868 (2006)Google Scholar
44.Yang, B., Wadsworth, J., Nieh, T.G.: Thermal activation in Au-based bulk metallic glass characterized by high-temperature nanoindentation. Appl. Phys. Lett. 90, 061911 (2007)CrossRefGoogle Scholar
45.Saksl, K., Franz, H., Jóvári, P., Klementiev, K., Welther, E., Ehnes, A., Saida, J., Inoue, A., Jiang, J.Z.: Evidence of icosahedral short-range order in Zr70Cu30 and Zr70Cu29Pd1 metallic glasses. Appl. Phys. Lett. 83, 3924 (2003)Google Scholar
46.Sietsma, J., Thijsse, B.J.: An investigation of universal medium range order in metallic glasses. J. Non-Cryst. Solids 135, 146 (1991)Google Scholar
47.Miracle, D.B., Egami, T., Flores, K.M., Kelton, K.F.: Structural aspects of metallic glasses. MRS Bull. 32, 629 (2007)Google Scholar
48.Flores, K.M., Sherer, E., Bharathula, A., Chen, H., Jean, Y.C.: Sub-nanometer open volume regions in a bulk metallic glass investigated by positron annihilation. Acta Mater. 55, 3403 (2007)CrossRefGoogle Scholar
49.Flores, K.M., Kanungo, B.P., Glade, S.C., Asoka-Kumar, P.: Characterization of plasticity-induced structural changes in a Zr-based bulk metallic glass using positron annihilation spectroscopy. J. Non-Cryst. Solids 353, 1201 (2007)CrossRefGoogle Scholar
50.Argon, A.S.: Plastic-deformation in metallic glasses. Acta Metall. 27, 47 (1979)Google Scholar
51.Spaepen, F.: Microscopic mechanism for steady-state inhomogeneous flow in metallic glasses. Acta Metall. Mater. 25, 407 (1977)CrossRefGoogle Scholar
52.Langer, J.S.: Shear-transformation-zone theory of deformation in metallic glasses. Scr. Mater. 54, 375 (2006)Google Scholar
53.Argon, A.S., Kuo, H.Y.: Free-energy spectra for inelastic deformation of 5 metallic-glass alloys. J. Non-Cryst. Solids 37, 241 (1980)Google Scholar
54.Rodney, D., Schuh, C.: Distribution of thermally activated plastic events in a flowing glass. Phys. Rev. Lett. 102, 235503 (2009)CrossRefGoogle Scholar
55.Schuh, C.A., Lund, A.C., Nieh, T.G.: New regime of homogeneous flow in the deformation map of metallic glasses: Elevated temperature nanoindentation experiments and mechanistic modeling. Acta Mater. 52, 5879 (2004)Google Scholar
56.Klaumunzer, D., Maass, R., Dalla Torre, F.H., Loffler, J.F.: Temperature-dependent shear band dynamics in a Zr-based bulk metallic glass. Appl. Phys. Lett. 96, 061901 (2010)Google Scholar
57.Schuh, C.A., Hufnagel, T.C., Ramamurty, U.: Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067 (2007)CrossRefGoogle Scholar
58.Packard, C.E., Schroers, J., Schuh, C.A.: In situ measurements of surface tension-driven shape recovery in a metallic glass. Scr. Mater. 60, 1145 (2009)Google Scholar
59.Nishiyama, N., Inoue, A., Jiang, J.Z.: Elastic properties of Pd40Cu30Ni10P20 bulk glass in supercooled liquid region. Appl. Phys. Lett. 78, 1985 (2001)Google Scholar
60.Johnson, W.L., Samwer, K.: A universal criterion for plastic yielding of metallic glasses with a (T/Tg)2/3 temperature dependence. Phys. Rev. Lett. 95, 195501 (2005)CrossRefGoogle Scholar
61.Homer, E.R., Rodney, D., Schuh, C.A.: Kinetic Monte Carlo study of activated states and correlated shear-transformation-zone activity during the deformation of an amorphous metal. Phys. Rev. B 81, 064204 (2010)CrossRefGoogle Scholar
62.Homer, E.R., Schuh, C.A.: Three-dimensional shear transformation zone dynamics model for amorphous metals. Modell. Simul. Mater. Sci. Eng. 18, 065009 (2010)CrossRefGoogle Scholar
63.Slipenyuk, A., Eckert, J.: Correlation between enthalpy change and free volume reduction during structural relaxation of Zr55Cu30Al10Ni5 metallic glass. Scr. Mater. 50, 39 (2004)CrossRefGoogle Scholar
64.Vandenbeukel, A., Sietsma, J.: The glass-transition as a free-volume related kinetic phenomenon. Acta Metall. Mater. 38, 383 (1990)Google Scholar
65.Ramamurty, U., Lee, M.L., Basu, J., Li, Y.: Embrittlement of a bulk metallic glass due to low-temperature annealing. Scr. Mater. 47, 107 (2002)Google Scholar
66.Lewandowski, J.J., Wang, W.H., Greer, A.L.: Intrinsic plasticity or brittleness of metallic glasses. Philos. Mag. Lett. 85, 77 (2005)CrossRefGoogle Scholar
67.Mukai, T., Nieh, T.G., Kawamura, Y., Inoue, A., Higashi, K.: Dynamic response of a Pd40Ni40P20 bulk metallic glass in tension. Scr. Mater. 46, 43 (2002)CrossRefGoogle Scholar
68.Hu, X., Ng, S.C., Feng, Y.P., Li, Y.: Glass forming ability and in-situ composite formation in Pd-based bulk metallic glasses. Acta Mater. 51, 561 (2003)Google Scholar
69.Shen, J., Chen, Q.J., Sun, J.F., Fan, H.B., Wang, G.: Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy. Appl. Phys. Lett. 86, 151907 (2005)Google Scholar
70.Trenkle, J.T., Packard, C.E., Schuh, C.A.: Hot nanoindentation in inert environments. Rev. Sci. Instrum. 81, 073901 (2010)CrossRefGoogle ScholarPubMed
71.Schuh, C.A., Packard, C.E., Lund, A.C.: Nanoindentation and contact-mode imaging at high temperatures. J. Mater. Res. 21, 725 (2006)CrossRefGoogle Scholar
72.Duan, Z.C., Hodge, A.M.: High-temperature nanoindentation: New developments and ongoing challenges. JOM 61, 32 (2009)CrossRefGoogle Scholar