Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-25T04:34:47.227Z Has data issue: false hasContentIssue false

Nanomaterials and structures for the fourth innovation of polymer electrolyte fuel cell

Published online by Cambridge University Press:  31 January 2011

Chanho Pak
Affiliation:
Energy Laboratory, Emerging Research Technology Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon 440-600, Korea
Sangkyun Kang
Affiliation:
Energy Laboratory, Emerging Research Technology Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon 440-600, Korea
Yeong Suk Choi
Affiliation:
Energy Laboratory, Emerging Research Technology Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon 440-600, Korea
Hyuk Chang*
Affiliation:
Energy Laboratory, Emerging Research Technology Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon 440-600, Korea
*
a)Address all correspondence to this author. e-mail: Hyuk.chang@samsung.com This paper has been selected as an Invited Feature Paper.
Get access

Abstract

Polymer electrolyte fuel cells (PEFCs) are drawing attention as energy conversion devices for next generations because of their highly efficient, environmentally benign, and portable features. In the last five decades, three distinguishable innovations were achieved in terms of proton conductive membranes and electrodes: introduction of perfluorinated membranes into PEFCs, adoption of ionomers for electrodes, and increased toughness of membranes by reinforced membranes. The efficiency, cost, and durability achieved from the past three innovations are still not enough to replace competing technologies such as combustion engines. In this review, the authors would elucidate the three different methods based on nanotechnology to overcome the limits: nanoporous carbon-supported catalysts, nanocomposite membranes, and nanostructured membrane electrode assemblies, which will bring the fourth innovation to PEFCs. With the innovation, PEFCs will fulfill the goals of being clean-energy conversion devices in the major applications of stationary, portable, and vehicle markets.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.International Energy Agency World Energy Outlook (OECD Publishing, Paris, France 2008)78Google Scholar
2.U.S. Energy Information Administration Monthly Energy Review April 2010 (Department of Energy, Washington, DC 2010)3 31, 33Google Scholar
3.Sandstede, G., Cairns, E.J., Bagotsky, V.S., Wiesener, K.: History of low temperature fuel cells, Handbook of Fuel Cells—Fundamentals, Technology and Application Vol. 1 edited by W. Vielstich, A. Lamm, and H.A. Gasteiger (John Wiley & Sons, New York 2003) Chap. 12 146218Google Scholar
4.Andujar, J.M., Segura, F.: Fuel cells: History and updating. A walk along two centuries. Renewable Sustainable Energy Rev. 13, 2309 (2009)CrossRefGoogle Scholar
5.Grubb, W.T. Jr.: Fuel cell. U.S. Patent No. 2,913,511 (1959)Google Scholar
6.Cairns, E.J., Douglas, D.L., Niedrach, L.W.: Performance of fractional watt ion exchange membrane fuel cells. AIChE J. 7, 551 (1961)CrossRefGoogle Scholar
7.Connolly, D.J., Gresham, W.F.: Fluorocarbon vinyl ether polymers. U.S. Patent No. 3,282,875 (1966)Google Scholar
8.Doyle, M., Rajendran, G.: Perfluorinated membranes, Handbook of Fuel Cells—Fundamentals, Technology and Application Vol. 3 edited by W. Vielstich, A. Lamm, and H.A. Gasteiger (John Wiley & Sons, New York 2003) Chap. 30 351395Google Scholar
9.Rajendran, R.G.: Polymer electrolyte membrane technology for fuel cells. MRS Bull. 30, 587 (2005)CrossRefGoogle Scholar
10.Lu, P.W.T., Srinivasan, S.: Advances in water electrolysis technology with emphasis on use of the solid polymer electrolyte. J. Appl. Electrochem. 9, 269 (1979)CrossRefGoogle Scholar
11.Raistrick, I.D.: Electrode assembly for use in a solid polymer electrolyte fuel cell. U.S. Patent No. 4,876 115 (1989)Google Scholar
12.Wilson, M.S.: Membrane catalyst layer for fuel cell. U.S. Patent No. 5,211,984 (1993)Google Scholar
13.Kolde, J.A., Bahar, B., Wilson, M.S., Zawodzinski, T.A., Gottesfeld, S.: Proceedings of the First International Symposium on Proton Exchange Membrane Fuel Cells Vol. 95–23 edited by S. Gottesfeld, G. Halpert, and A. Lardgrebe (The Electrochemical Society, Pennington, NJ 1995)193Google Scholar
14.Beuscher, U., Cleghorn, S.J.C., Johnson, W.B.: Challenges for PEM fuel cell membrane. Int. J. Energy Res. 29, 1103 (2005)CrossRefGoogle Scholar
15.Steele, B.C.H.: The enabling technology for the commercialization of fuel cell system. J. Mater. Sci. 36, 1053 (2001)CrossRefGoogle Scholar
16.Antolini, E.: Carbon supports for low-temperature fuel cell catalysts. Appl. Catal., B 88, 1 (2009)CrossRefGoogle Scholar
17.Barsi, S., Kamarudin, S.K., Daud, W.R.W., Yaakub, Z.: Nanocatalyst for direct methanol fuel cell (DMFC). Int. J. Hydrogen Energy 35, 7957 (2010 DOI: 10.1016/ j.ijhydene.2010.05.111 )Google Scholar
18.Chang, H., Joo, S.H., Pak, C.: Synthesis and characterizations of mesoporous carbon for fuel-cell applications. J. Mater. Chem. 17, 3078 (2007)CrossRefGoogle Scholar
19.Joo, S.H., Choi, S.J., Oh, I., Kwak, J., Liu, Z., Terasaki, O., Ryoo, R.: Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 412, 169 (2001)CrossRefGoogle ScholarPubMed
20.Ryoo, R., Joo, S.H., Jun, S.: Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J. Phys. Chem. B 103, 7743 (1999)CrossRefGoogle Scholar
21.Ryoo, R., Joo, S.H., Kruk, M., Jaroniec, M.: Ordered mesoporous carbon. Adv. Mater. 13, 677 (2001)3.0.CO;2-C>CrossRefGoogle Scholar
22.Yang, H.F., Zhao, D.Y.: Synthesis of replica mesostructures by the nanocasting strategy. J. Mater. Chem. 15, 1217 (2005)Google Scholar
23.Lu, A.H., Schuth, F.: Nanocasting: A versatile strategy for creating nanostructured porous materials. Adv. Mater. 18, 1793 (2006)CrossRefGoogle Scholar
24.Pak, C., Kim, J.M., Chang, H.: Mesoporous carbon-supported catalyst for direct methanol fuel cells, Electrocatalysis of Direct Methanol Fuel Cells edited by H. Liu and J. Zhang (Wiley-VCH, Weinheim 2009) Chap. 9 355378CrossRefGoogle Scholar
25.Pak, C., Yoo, D.J., Lee, S-A., Kim, J.M., Chang, H.: Novel Pt supported catalyst using mesoporous carbon for direct methanol fuel cell. Samsung J. Innovative Tech. 1, 239 (2005)Google Scholar
26.Joo, S.H., Lee, H.I., You, D.J., Kwon, K., Kim, J.H., Choi, Y.S., Kang, M., Kim, J.M., Pak, C., Chang, H., Seung, D.: Ordered mesoporous carbons with controlled particle sizes as catalyst supports for direct methanol fuel cell cathodes. Carbon 46, 2034 (2008)CrossRefGoogle Scholar
27.Joo, S.H., Pak, C., You, D.J., Lee, S-A., Lee, H.I., Kim, J.M., Chang, H., Seung, D.: Ordered mesoporous carbons (OMC) as supports of electrocatalysts for direct methanol fuel cells (DMFC): Effect of carbon precursors of OMC on DMFC performances. Electrochim. Acta 52, 1618 (2006)CrossRefGoogle Scholar
28.Pak, C.: High loading supported carbon catalyst, method of preparing the same, catalyst electrode including the same, and fuel cell including the catalyst electrode. U.S. Patent No.7,132 385 (2006)Google Scholar
29.Kim, H-T., You, D.J., Yoon, H-K., Joo, S.H., Pak, C., Chang, H., Song, I-S.: Cathode catalyst layer using supported Pt catalyst on ordered mesoporous carbon for direct methanol fuel cell. J. Power Sources 180, 724 (2008)CrossRefGoogle Scholar
30.Lee, H.I., Kim, J.H., You, D.J., Lee, J.E., Kim, J.M., Ahn, W-S., Pak, C., Joo, S.H., Chang, H., Seung, D.: Rational synthesis pathway for ordered mesoporous carbon with controllable 30- to 100-angstrom pores. Adv. Mater. 20, 757 (2008)CrossRefGoogle Scholar
31.Lee, H.I., Joo, S.H., Kim, J.H., You, D.J., Kim, J.M., Park, J-N., Chang, H., Pak, C.: Ultrastable Pt nanoparticles supported on sulfur-containing ordered mesoporous carbon via strong metal-support interaction. J. Mater. Chem. 19, 5934 (2009)CrossRefGoogle Scholar
32.Pinnavaia, T.J.: Intercalated clay catalysts. Science 220, 365 (1983)CrossRefGoogle ScholarPubMed
33.Usuki, A., Koiwai, A., Kojima, Y., Kawasumi, M., Okada, A., Kurauchi, T., Kamigaito, O.J.: Interaction of nylon 6-clay surface and mechanical properties of nylon 6-clay hybrid. Appl. Polym. Sci. 55, 119 (1995)CrossRefGoogle Scholar
34.Petrovicova, E., Knight, R., Schadler, L.S., Twardowski, T.E.: Nylon 11/silica nanocomposite coatings applied by the HVOF process. II. Mechanical and barrier properties. J. Appl. Polym. Sci. 78, 2272 (2000)3.0.CO;2-U>CrossRefGoogle Scholar
35.Vaia, R.A., Jaudt, K.D., Kramer, E.J., Giannelis, E.P.: Microstructural evolution of melt intercalated polymer–organically modified layered silicates nanocomposites. Chem. Mater. 8, 2628 (1996)CrossRefGoogle Scholar
36.Burnside, S.D., Wang, H.C., Giannelis, E.P.: Direct polymer intercalation in single crystal vermiculite. Chem. Mater. 11, 1055 (1999)CrossRefGoogle Scholar
37.Hickner, M.A., Ghassemi, H., Kim, Y.S., Einsla, B.R., McGrath, J.E.: Alternative polymer systems for proton exchange membranes (PEMs). Chem. Rev. 104, 4587 (2004)CrossRefGoogle ScholarPubMed
38.Xing, P., Robertson, G.P., Guiver, M.D., Mikhailenko, S.D., Kaliaguine, S.: Sulfonated poly(aryl ether ketone)s containing naphthalene moieties obtained by direct copolymerization as novel polymers for proton exchange membranes. J. Polym. Sci., Part A: Polym. Chem. 42, 2866 (2004)CrossRefGoogle Scholar
39.Ueda, M., Toyota, H., Ouchi, T., Sugiyama, J., Yonetake, K., Masuko, T., Teramoto, T.: Synthesis and characterization of aromatic poly(ether sulfone)s containing pendant sodium sulfonate groups. J. Polym. Sci., Part A: Polym. Chem. 31, 853 (1993)CrossRefGoogle Scholar
40.Wang, F., Chen, T., Xu, J.: Sodium sulfonate-functionalized poly(ether ether ketone)s. Macromol. Chem. Phys. 199, 1421 (1998)3.0.CO;2-P>CrossRefGoogle Scholar
41.Kobayashi, T., Rikukawa, M., Sanui, K., Ogata, N.: Proton-conducting polymers derived from poly(ether-etherketone) and poly(4-phenoxybenzoyl-1,4-phenylene). Solid State Ionics 106, 219 (1998)CrossRefGoogle Scholar
42.Ghassemi, H., McGrath, J.E.: Synthesis and properties of new sulfonated poly(p-phenylene) derivatives for proton exchange membranes. I. Polymer 45, 5847 (2004)CrossRefGoogle Scholar
43.Ghassemi, H., Ndip, G., McGrath, J.E.: New multiblock copolymers of sulfonated poly(4′-phenyl-2,5-benzophenone) and poly(arylene ether sulfone) for proton exchange membranes. II. Polymer 45, 5855 (2004)CrossRefGoogle Scholar
44.Miyatake, K., Hay, A.S.: Synthesis and properties of poly(arylene ether)s bearing sulfonic acid groups on pendant phenyl rings. J. Polym. Sci., Part A: Polym. Chem. 39, 3211 (2001)CrossRefGoogle Scholar
45.Miyatake, K., Oyaizu, K., Tsuchida, E., Hay, A.S.: Synthesis and properties of novel sulfonated arylene ether/fluorinated alkane copolymers. Macromolecules 34, 2065 (2001)CrossRefGoogle Scholar
46.Gao, Y., Robertson, G.P., Guiver, M.D., Jian, X.: Synthesis and characterization of sulfonated poly(phthalazinone ether ketone) for proton exchange membrane materials. J. Polym. Sci., Part A: Polym. Chem. 41, 497 (2003)CrossRefGoogle Scholar
47.Choi, Y.S., Kim, T.K., Kim, E.A., Joo, S.H., Pak, C., Lee, Y.H., Chang, H., Seung, D.: Exfoliated sulfonated poly(arylene ether sulfone)–clay nanocomposites. Adv. Mater. 20, 2341 (2008)CrossRefGoogle Scholar
48.Theng, B.K.G.: Formation and Properties of Clay-Polymer Complexes (Elsevier Scientific Pub. Co, New York 1979)Google Scholar
49.Choi, Y.S., Ham, H.T., Chung, I.J.: Effect of monomers on the basal spacing of sodium montmorillonite and the structures of polymer–clay nanocomposites. Chem. Mater. 16, 2522 (2004)CrossRefGoogle Scholar
51.Yamamoto, O.: Low temperature electrolytes and catalysts, Handbook of Fuel Cells—Fundamentals, Technology and Application Vol. 4 edited by W. Vielstich, A. Lamm, and H.A. Gasteiger (John Wiley & Sons, New York 2003) Chap. 71 10021014Google Scholar
52.Kawada, T., Mizusaki, J.: Current electrolytes and catalysts, Handbook of Fuel Cells—Fundamentals, Technology and Application Vol. 4 edited by W. Vielstich, A. Lamm, and H.A. Gasteiger (John Wiley & Sons, New York 2003) Chap. 70 9871001Google Scholar
53.Steele, B.C.H., Heinzel, A.: Materials for fuel-cell technologies. Nature 414, 345 (2001)CrossRefGoogle ScholarPubMed
54.Yoo, H.I., Hwang, J.H.: Thermoelectric behavior of single crystalline ZrO2 (+8mo Y2O3). J. Phys. Chem. Solids 53, 973 (1992)CrossRefGoogle Scholar
55.Kreuer, K.D.: Proton-conducting oxides. Annu. Rev. Mater. Res. 33, 333 (2003)CrossRefGoogle Scholar
56.Shim, J.H., Park, J.S., An, J., Gur, T.M., Kang, S., Prinz, F.B.: Intermediate-temperature ceramic fuel cells with thin film yttrium-doped barium zirconate electrolytes. Chem. Mater. 21, 3290 (2009)CrossRefGoogle Scholar
57.Su, P.C., Chao, C.C., Shim, J.H., Fasching, R., Prinz, F.B.: Solid oxide fuel cell with corrugated thin film electrolyte. Nano Lett. 8, 2289 (2008)CrossRefGoogle ScholarPubMed
58.Rey-Mermet, S., Muralt, P.: Solid oxide fuel cell membranes supported by nickel gird anode. Solid State Ionics 179, 1497 (2006)CrossRefGoogle Scholar
59.Muecke, U.P., Beckel, D., Bernard, A., Bieberle-Hutter, A., Graf, S., Infortuna, A., Müller, P., Rupp, J.L.M., Schneider, J., Gauckler, L.J.: Micro solid oxide fuel cells on glass ceramic substrates. Adv. Funct. Mater. 18, 1 (2008)CrossRefGoogle Scholar
60.Kwon, C-W., Son, J-W., Lee, D-J., Kim, K-B., Lee, J-H., Lee, H-W.: Fabrication of thin film SOFC by using AAO as electrode template, Proceedings of European Fuel Cell Forum edited by T.S. Irvine (Lucerne, Switzerland 2008)B0519Google Scholar
61.Evans, A., Bieberle-Hütter, A., Rupp, J.L.M., Gauckler, L.J.: Review on microfabricated micro-solid oxide fuel cell membranes. J. Power Sources 194, 119 (2009)CrossRefGoogle Scholar