Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-07-05T11:49:41.470Z Has data issue: false hasContentIssue false

Nanocrystalline α–Fe, Fe3C, and Fe7C3 produced by CO2 laser pyrolysis

Published online by Cambridge University Press:  31 January 2011

Xiang-Xin Bi
Affiliation:
Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40506
B. Ganguly
Affiliation:
Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506
G.P. Huffman
Affiliation:
Department of Physics and Astronomy and Department of Materials Science and Engineering, University of Kentucky, Lexington, Kentucky 40506
F.E. Huggins
Affiliation:
Department of Materials Science and Engineering, University of Kentucky, Lexington, Kentucky 40506
M. Endo
Affiliation:
Department of Electrical Engineering, Shinshu University, Nagano-city 380, Japan
P.C. Eklund
Affiliation:
Center for Applied Energy Research and Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506
Get access

Abstract

Nanocrystalline α–Fe, Fe3C, and Fe7C3, particles with narrow size distributions were produced by CO2 laser pyrolysis of vapor mixtures of Fe(CO)5 and C2H4. Details of the synthesis procedure are discussed. Mossbauer spectroscopy and x-ray diffraction were used to identify the structural phases and the former was used also to study the magnetism of the nanoparticles. All the nanoparticles were observed to be ferromagnetic in this size range. If excess C2H4 appears in the reactant gas mixture, several monolayers of pyrolytic carbon were observed to form on the particle surface, as deduced from transmission electron microscopy and Raman scattering studies. Results of thermo-gravimetric analysis/mass spectroscopy studies of this carbon coating indicate it is gasified in hydrogen at temperatures T ∼ 250 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Haggerty, J. S. in Laser-induced Chemical Processes, edited by Steinfeld, J. I. (Plenum Press, New York, 1981).Google Scholar
2Fantoni, R.Borsella, E.Piccirilio, S. and Enzo, S.SPIE 1279, 77 (1990).Google Scholar
3Buerki, P. R.Troxler, T. and Leutwyler, S. in High Temperature Science (Humana Press Inc., 1990), Vol. 27, p. 323.Google Scholar
4Curcio, F.Ghiglione, G.Musci, M. and Nannetti, C.Appl. Surf. Sci. 36, 5258 (1989).CrossRefGoogle Scholar
5Rice, G.W. and Woodin, R.L.J. Am. Ceram. Soc. 71, C181 (1988).CrossRefGoogle Scholar
6Curcio, F.Musci, M. and Notaro, N.Appl. Surf. Sci. 46, 225229 (1990).CrossRefGoogle Scholar
7Fiato, R. A.Rice, G. W.Miseo, S. and Soled, S. L. United States Patent, 463775 3 (1987).Google Scholar
8Rice, G.W.Fiato, R.A. and Soled, S.L. United States Patent, 4659681 (1987).Google Scholar
9Yakel, H. L.Int. Met. Rev. 30, 17 (1985).CrossRefGoogle Scholar
10Senateur, J.P. and Fruchart, R.Academie Des Sciences 1, 3114 (1963).Google Scholar
11Akamatu, A. and Sato, K.Bull. Chem. Soc. Jpn. 22, 127 (1949).CrossRefGoogle Scholar
12Kehrer, V. J. and Leidheiser, H.J. Phys. Chem. 58, 550 (1954).CrossRefGoogle Scholar
13Cohen, R.L.Applications of Mossbauer Spectroscopy, edited by Cohen, R. L. (Academic Press, New York, 1980).Google Scholar
14Echstrom, H. C. and Adock, W.A.J. Am. Chem. Soc. 72, 1042 (1950).Google Scholar
15Zhukov, A. A.Shterenberg, L.E.Shalashov, V.A.Tomas, V.K. and Berezovskaya, N.A.Acta Metall. 21 (3), 195197 (1973).CrossRefGoogle Scholar
16Tsuzuki, A.Sago, S.Hirano, S. and Naka, S.J. Mater. Sci. 19 (8), 25132518 (1984).CrossRefGoogle Scholar
17Shterenberg, L.E.Slesarev, V.N.Korsunskaya, I.A. and Kamenetskaya, D.S., High Temp. High Press. 7, 517522 (1975).Google Scholar
18Naka, S.Tsuzuki, A. and Hirano, S.J. Mater. Sci. 19, 259262 (1984).CrossRefGoogle Scholar
19Naka, S.Tsuzuki, A.Takeda, Y. and Hirano, S. Proc. Int. Conf., September-October, 1980, Japan, p. 929.Google Scholar
20Tajima, S. and Hirano, S-I.Jpn. J. Appl. Phys., Part I 29 (4), 662668 (1990).CrossRefGoogle Scholar
21Herbstein, F.H. and Snyman, J.A.Inorg. Chem. 3, 894 (1964).CrossRefGoogle Scholar
22Fruchart, R. and Rouault, A.Ann. Chim. 143, 1615 (1969).Google Scholar
23Bouchard, J.Ann.Chim. t. 2, 353366 (1967).Google Scholar
24Audier, M.Bowen, P. and Jones, W.J. Cryst. Growth 63, 125134 (1983).CrossRefGoogle Scholar
25Andrews, K. W.Dyson, D. J. and Keown, S.R.Interpretation of Electron Diffraction Patterns (Hill, London, 1971).Google Scholar
26Audier, M. Universite Scientifique et Medicale et a l'lnstitut National Polytechnique de Grenoble, Ph.D. Thesis, 1980.Google Scholar
27Butt, J.B.Catalysis Lett. 7, 6182 (1990).CrossRefGoogle Scholar
28Amelse, J.A.Grynkewich, G.Butt, J.B. and Schwartz, L.H.J. Phys. Chem. 85, 24842488 (1981).CrossRefGoogle Scholar
29Fournier, J.Carreiro, L. Y-Qian, T.Soled, S.Kershaw, R.Dwight, K. and Wold, A.J. Solid State Chem. 58, 211 (1985).CrossRefGoogle Scholar
30Hirano, S. and Tajima, S.J. Mater. Sci. 25, 4457 (1990).Google Scholar
31Stencel, J.M.Eklund, P.C.Bi, X.X., and Derbyshire, F.J.Catalysis Today 15, 285 (1992).CrossRefGoogle Scholar
32Patty, R. R.Russwurm, G. M.McClenny, W. A. and Morgan, D. R.Appl. Opt. 13 (12), 2850 (1974).CrossRefGoogle Scholar
33X-ray Powder Diffraction Data File, JCPDS, 1991.Google Scholar
34Cullity, B.D.Elements of X-Ray Diffraction (Addison-Wesley, Reading, MA, 1967).Google Scholar
35Bi, X-X.Eklund, P. C.Stencel, J. M.Taulbee, D. N.Ni, H.F., Derbyshire, F. J. and Endo, M.Carbon Coatings on Iron Carbide Particles Produced by Laser Pyrolysis, Proc. 20th Biennial Conf. on Carbon (Santa Barbara, CA, 23-28 June, 1991),pp. 518519.Google Scholar
36Huffman, G. P.Chemtech August, 504 (1980).Google Scholar
37Caer, G. Le, Dubois, J. M. and Senateur, J. P.J. Solid State Chem. 19, 19 (1976).Google Scholar
38Dines, T.J.Tither, D.Dehbi, A. and Matthews, A.Carbon 29 (2), 225231 (1991).CrossRefGoogle Scholar
39Everall, N. J.Lumsdon, J. and Christopher, D. J.Carbon 29 (2), 133137 (1991).CrossRefGoogle Scholar
40Tuinstra, F. and Koenig, J.L.J. Chem. Phys. 53 (3), 11261130 (1970).CrossRefGoogle Scholar
41Garba, E.J.D. and Jacobs, R. L.J. Phys. Chem. Solids 50 (2), 101105 (1989).CrossRefGoogle Scholar
42Bi, X.X.Zhou, P. and Eklund, P.C. A preliminary study using Scanning Tunneling Microscope (STM) indicates that both Fe3C and Fe7C3 nanocrystalline powders are metallic, in preparation, 1992.Google Scholar
43Sethuraman, A.R.Bi, X-X.Eklund, P.C.Stencel, J.M.Cavin, O.B., and Hubbard, C. R.In-Situ High Temperature X-Ray Diffraction Studies of Nanocrystalline Iron Carbides, Proc. Mater. Res. Soc. Meeting (San Francisco, CA, April 27-May 1, 1992) (1993, in press).Google Scholar