Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-27T02:27:51.770Z Has data issue: false hasContentIssue false

Morphology tuning in nontemplated solvothermal synthesis of titania nanoparticles

Published online by Cambridge University Press:  01 May 2006

Xin M. Wang
Affiliation:
Materials Science Centre, School of Materials, University of Manchester, Manchester M1 7HS, United Kingdom
Ping Xiao*
Affiliation:
Materials Science Centre, School of Materials, University of Manchester, Manchester M1 7HS, United Kingdom
*
a) Address all correspondence to this author. e-mail: ping.xiao@manchester.ac.uk
Get access

Abstract

Nanoparticles and nanocrystalline particles of pure anatase titania (TiO2) were synthesized by solvothermal processing of TiCl4 ethanol and isopropanol solutions at 120 to 200 °C. This one-step and nonsurfactant approach is versatile and the morphology tuning can be achieved by manipulating the growth kinetics. Dispersed nanocrystals of spherical, cubic, and acicular shapes and hollow spherical and core-shell structured micrometer-sized particles were obtained under different experimental conditions. The obtained hollow spherical- and core-shell–structured particles have an average diameter of 700 nm to 1.0 μm, with an average crystallite size of 5 to 16 nm. The dependence of nucleation/crystal growth and morphology development on solvothermal medium, reaction temperature, and reactant concentration was investigated. The reaction mechanism was then suggested and tentatively discussed from coordination and solution chemistry.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nozik, A.J.: Quantum dot solar cells. Physica E 14, 115 (2002).CrossRefGoogle Scholar
2.Plass, R., Pelet, S., Krueger, J., Gratzel, M., Bach, U.: Quantum dot sensitization of organic-inorganic hybrid solar cells. J. Phys. Chem. B 106, 7578 (2002).CrossRefGoogle Scholar
3.Kitamura, T., Ikeda, M., Shigaki, K., Inoue, T., Anderson, N.A., Ai, X., Lian, T., Yanagida, S.: Phenyl-conjugated oligoene sensitizers for TiO2 solar cells. Chem. Mater. 16, 1806 (2004).CrossRefGoogle Scholar
4. In Hollow and Solid Spheres and Microspheres: Science and Technology Associated With Their Fabrication and Application edited by Wilcox, D.L., Sr., M. Berg, T. Bernat, D. Kellerman, and J.K. Cochran, Jr. (Mater. Res. Soc. Symp. Proc. 372, Pittsburgh, PA, 1995).Google Scholar
5.Caruso, F.: Nanoengineering of particle surfaces. Adv. Mater. 13, 11 (2001).3.0.CO;2-N>CrossRefGoogle Scholar
6.Schartl, W.: Crosslinked spherical nanoparticles with core-shell topology. Adv. Mater. 12, 1899 (2000).3.0.CO;2-T>CrossRefGoogle Scholar
7.Cozzoli, P.D., Kornowski, A., Weller, H.: Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods. J. Am. Chem. Soc. 125, 14539 (2003).CrossRefGoogle ScholarPubMed
8.Tang, Z., Zhang, J., Cheng, Z., Zhang, Z.: Synthesis of nanosized rutile TiO2 powder at low temperature. Mater. Chem. Phys. 77, 314 (2002).CrossRefGoogle Scholar
9.Song, K.C., Pratsinis, S.E.: Control of phase and pore structure of titania powders using HCl and NH4OH catalysts. J. Am. Ceram. Soc. 84, 92 (2001).CrossRefGoogle Scholar
10.Zhou, Y., Antonietti, M.: Synthesis of very small TiO2 nanocrystals in a room-temperature ionic liquid and their self-assembly toward mesoporous spherical aggregates. J. Am. Chem. Soc. 125, 14960 (2003).CrossRefGoogle Scholar
11.Sun, J., Gao, L.: pH effect on titania-phase transformation of precipitates from titanium tetrachloride solutions. J. Am. Ceram. Soc. 85, 2382 (2002).CrossRefGoogle Scholar
12.Sivakumar, S., Pillai, P.K., Mukundan, P., Warrier, K.G.K.: Sol-gel synthesis of nanosized anatase from titanyl sulfate. Mater. Lett. 57, 330 (2002).CrossRefGoogle Scholar
13.Kim, S-J., Park, S-D., Jeong, Y.H.: Homogeneous precipitation of TiO2 ultrafine powders from aqueous TiOCl2 solution. J. Am. Ceram. Soc. 82, 927 (1999).CrossRefGoogle Scholar
14.Pottier, A., Cassaignon, S., Chaneac, C., Villain, F., Tronc, E., Jolivet, J-P.: Size tailoring of TiO2 anatase nanoparticles in aqueous medium and synthesis of nanocomposites. Characterization by Raman spectroscopy. J. Mater. Chem. 13, 877 (2003).CrossRefGoogle Scholar
15.Chemseddine, A., Moritz, T.: Nanostructuring titania: Control over nanocrystal structure, size, shape, and organization. Eur. J. Inorg. Chem. 1999(2), 235 (1999).3.0.CO;2-N>CrossRefGoogle Scholar
16.Bischoff, B.L., Anderson, M.A.: Peptization process in the sol-gel preparation of porous anatase (TiO2). Chem. Mater. 7, 1772 (1995).CrossRefGoogle Scholar
17.Niederberger, M., Bartl, M.H., Stucky, G.D.: Benzyl alcohol and titanium tetrachloride: A versatile reaction system for the nonaqueous and low-temperature preparation of crystalline and luminescent titania nanoparticles. Chem. Mater. 14, 4364 (2002).CrossRefGoogle Scholar
18.Eiden-Assmann, S., Widoniak, J., Maret, G.: Synthesis and characterization of porous and nonporous monodisperse colloidal TiO2 particles. Chem. Commun. 16, 6 (2004).Google Scholar
19.McLachlan, M.A., Johnson, N.P., Rue, R.M.D.L., McComb, D.W.: Thin film photonic crystals: Synthesis and characterisation. J. Mater. Chem. 14, 144 (2004).CrossRefGoogle Scholar
20.Kolen’ko, Y.V., Burukhin, A.A., Churagulov, B.R., Oleynikov, N.N.: Synthesis of nanocrystalline TiO2 powders from aqueous TiOSO4 solutions under hydrothermal conditions. Mater. Lett. 57, 1124 (2003).CrossRefGoogle Scholar
21.Kolen’ko, Y.V., Maximov, V.D., Burukhin, A.A., Muhanov, V.A., Churagulov, B.R.: Synthesis of ZrO2 and TiO2 nanocrystalline powders by hydrothermal process. Mater. Sci. Eng. C 23, 1033 (2003).CrossRefGoogle Scholar
22.Hirano, M., Nakahara, C., Ota, K., Tanaike, O., Inagaki, M.: Photoactivity and phase stability of ZrO2-doped anatase-type TiO2 directly formed as nanometer-sized particles by hydrolysis under hydrothermal conditions. J. Solid State Chem. 170, 39 (2003).CrossRefGoogle Scholar
23.Sugimoto, T., Zhou, X., Muramatsu, A.: Synthesis of uniform anatase TiO2 nanoparticles by gel-sol method. 3. Formation process and size control. J. Colloid Interface Sci. 259, 43 (2003).CrossRefGoogle ScholarPubMed
24.Sugimoto, T., Zhou, X., Muramatsu, A.: Synthesis of uniform anatase TiO2 nanoparticles by gel-sol method. 4. Shape control. J. Colloid Interface Sci. 259, 53 (2003).CrossRefGoogle ScholarPubMed
25.Yang, J., Mei, S., Ferreira, J.M.F.: Hydrothermal synthesis of nanosized titania powders: Influence of tetraalkyl ammonium hydroxides on particle characteristics. J. Am. Ceram. Soc. 84, 1696 (2001).CrossRefGoogle Scholar
26.Yang, J., Mei, S., Ferreira, J.M.F.: Hydrothermal synthesis of nanosized titania powders: Influence of peptization and peptizing agents on the crystalline phases and phase transitions. J. Am. Ceram. Soc. 83, 1361 (2000).CrossRefGoogle Scholar
27.Aruna, S.T., Tirosh, S., Zaban, A.: Nanosize rutile titania particle synthesis via a hydrothermal method without mineralizers. J. Mater. Chem. 10, 2388 (2000).CrossRefGoogle Scholar
28.Yang, J., Mei, S., Ferreira, J.M.F.: In situ preparation of weakly flocculated aqueous anatase suspensions by a hydrothermal technique. J. Colloid Interface Sci. 260, 82 (2003).CrossRefGoogle ScholarPubMed
29.Cheng, H., Ma, J., Zhao, Z., Qi, L.: Hydrothermal preparation of uniform nanosize rutile and anatase particles. Chem. Mater. 7, 663 (1995).CrossRefGoogle Scholar
30.Yin, S., Fujishiro, Y., Wu, J., Aki, M., Sato, T.: Synthesis and photocatalytic properties of fibrous titania by solvothermal reactions. J. Mater. Process. Technol. 137, 45 (2003).CrossRefGoogle Scholar
31.Deng, Z-X., Wang, C., Li, Y-D.: New hydrolytic process for producing zirconium dioxide, tin dioxide, and titanium dioxide nanoparticles. J. Am. Ceram. Soc. 85, 2837 (2002).CrossRefGoogle Scholar
32.Wang, C., Deng, Z-X., Zhang, G., Fan, S., Li, Y.: Synthesis of nanocrystalline TiO2 in alcohols. Powder Technol. 125, 39 (2002).CrossRefGoogle Scholar
33.Wen, B., Liu, C., Liu, Y.: Solvothermal synthesis of ultralong single-crystalline TiO2 nanowires. New J. Chem. 29, 969 (2005).CrossRefGoogle Scholar
34.Wen, B., Liu, C., Liu, Y.: Controllable synthesis of one-dimensional single-crystalline TiO2 nanostructures. Chem. Lett. 34, 396 (2005).CrossRefGoogle Scholar
35.Yin, S., Aita, Y., Komatsu, M. vWang, J., Tang, Q., Sato, T.: Synthesis of excellent visible-light responsive TiO2-xNy photocatalyst by a homogeneous precipitation-solvothermal process. J. Mater. Chem. 15, 674 (2005).CrossRefGoogle Scholar
36.Nagaveni, K., Hegde, M.S., Ravishankar, N., Subbanna, G.N., Madras, G.: Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity. Langmuir 20, 2900 (2004).CrossRefGoogle ScholarPubMed
37.Cho, C.H., Kim, D.K.: Phoocatalytic activity of monodispersed spherical TiO2 particles with different crystallization routes. J. Am. Ceram. Soc. 86, 1138 (2003).CrossRefGoogle Scholar
38.Trentler, T.J., Denler, T.E., Bertone, J.F., Agrawal, A., Colvin, V.L.: Synthesis of TiO2 nanocrystals by nonhydrolytic solution-based reactions. J. Am. Chem. Soc. 121, 1613 (1999).CrossRefGoogle Scholar
39.Arnal, P., Corriu, R.J.P., Leclercq, D., Mutin, P.H., Vioux, A.: A solution chemistry study of nonhydrolytic sol-gel routes to titania. Chem. Mater. 9, 694 (1997).CrossRefGoogle Scholar
40.Arnal, P., Corriu, R.J.P., Leclercq, D., Mutin, P.H., Vioux, A.: Preparation of anatase, brookite and rutile at low temperature by non-hydrolytic sol-gel methods. J. Mater. Chem. 6, 1925 (1996).CrossRefGoogle Scholar
41.Kominami, H., Kohno, M., Matsunaga, Y., Kera, Y.: Thermal decomposition of titanium alkoxide and silicate ester in organic solvent: A new method for synthesizing large-surface-area, silica-modified titanium(IV) oxide of high thermal stability. J. Am. Ceram. Soc. 84, 1178 (2001).CrossRefGoogle Scholar
42.Kim, C-S., Moon, B.K., Park, J-H., Choi, B-C., Seo, H-J.: Solvothermal synthesis of nanocrystalline TiO2 in tolene with surfactant. J. Cryst. Growth 257, 309 (2003).CrossRefGoogle Scholar
43.Niederberger, M., Bartl, M.H., Stucky, G.D.: Benzyl alcohol and transition metal chlorides as a versatile reaction system for the nonaqueous and low-temperature synthesis of crystalline nano-objects with controlled dimensionality. J. Am. Chem. Soc. 124, 13642 (2002).CrossRefGoogle ScholarPubMed
44.Vioux, A.: Nonhydrolytic sol-gel routes to oxides. Chem. Mater. 9, 2292 (1997).CrossRefGoogle Scholar
45.Wang, X.M., Xiao, P.: Non-template synthesis of titania hollow spheres and their thermal stability. J. Mater. Res. 20, 796 (2005).CrossRefGoogle Scholar
46.Sugimoto, T., Zhou, X., Muramatsu, A.: Synthesis of uniform anatase TiO2 nanoparticles by gel-sol method. 1. Solution chemistry of Ti(OH)n(4-n)+ complexes. J. Colloid Interface Sci. 252, 339 (2002).CrossRefGoogle Scholar
47.Widegren, J., Bergstrom, L.: Electrostatic stabilization of ultrafine titania in ethanol. J. Am. Ceram. Soc. 85, 523 (2002).CrossRefGoogle Scholar