Hostname: page-component-5c6d5d7d68-thh2z Total loading time: 0 Render date: 2024-08-18T02:49:39.789Z Has data issue: false hasContentIssue false

The migration of interstitial H in diamond and its pairing with substitutional B and N: Molecular orbital theory

Published online by Cambridge University Press:  03 March 2011

S.P. Mehandru
Affiliation:
Chemistry Department, Case Western Reserve University, Cleveland, Ohio 44106-7078
Alfred B. Anderson
Affiliation:
Chemistry Department, Case Western Reserve University, Cleveland, Ohio 44106-7078
Get access

Abstract

We present results of atom superposition and electron delocalization molecular orbital (ASED-MO) calculations of interactions of interstitial H with substitutional B and N in diamond. Nearest-neighbor and next-nearest-neighbor C atoms were relaxed in geometry depending on the cluster size, XC34H36 or XC70H60, respectively, where X = B or N and the H atoms saturate the surface dangling radical orbitals of the models. A small Jahn-Teller distortion occurs for interstitial B, a shallow acceptor which, in the B state, sits in a tetrahedral lattice site. For interstitial N distortions are large, with a long C-N distance which stabilizes a ŝ orbital that would otherwise be in the conduction band. This orbital has one electron in it and has its greatest amplitude on C; the bonding counterpart has its greatest amplitude on N and is similar to the N lone-pair orbital in amines. The calculations indicate that N is a deep donor and N+ relaxes to the tetrahedral lattice site. Interstitial H is a mid-band-gap donor and is possibly also an acceptor with a high 1.9 eV calculated activation energy barrier to migration. Interstitial H+ is expected to be very mobile, with a migration barrier of 0.1 eV. H is predicted to be relatively immobile with an activation barrier for migration of 2.5 eV. The mobility of bond-inserted H around B in BH pairs should be high, with a calculated activation energy of 0.13 eV, but for N the comparable process has an activation energy of 2.50 eV. In NH pairs the interstitial H has formed a bond with the radical orbital on the C, so donation would be from the lone-pair orbital on N, which lies deep in the band gap; hence, the donor property is passivated.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Angus, J. C. and Hayman, C. C., Science 241, 913 (1988); Angus, J. C., Buck, F. A., Sunkara, M., Groth, T. F., Hayman, C. C., and Gat, R., Mater. Res. Bull. XIV, 38 (1989).CrossRefGoogle Scholar
2Kittel, C., Introduction to Solid State Physics (John Wiley, New York, 1986), p. 185.Google Scholar
3Collins, A. T. and Lightowlers, E. C., in The Properties of Diamond, edited by Field, J.E. (Academic Press, London, 1979), p. 79.Google Scholar
4Chrenko, R. M., Phys. Rev. B 7, 4560 (1973).Google Scholar
5Leivo, W. J. and Smoluchowski, R., Phys. Rev. 98, 1532 (1955).Google Scholar
6Brophy, J. E., Phys. Rev. 99, 1336 (1955).CrossRefGoogle Scholar
7Austin, I. G. and Wolfe, R., Proc. Phys. Soc. London B 69, 329 (1956); Wedepohl, P. T., Proc. Phys. Soc. London B 70, 177 (1957).CrossRefGoogle Scholar
8Davies, G., J. Phys. C: Solid State Phys. 9, L537 (1976).Google Scholar
9van Wyk, J. A. and Loubser, J. H. N., J. Phys. C: Solid State Phys. 16, 1501 (1983).Google Scholar
10Berman, R., Hudson, P. R. W, and Martinez, M., J. Phys. C: Solid State Phys. 8, L430 (1975).CrossRefGoogle Scholar
11Smith, W. V., Sorokin, P. P., Gelles, L. L., and Lasher, G. J., Phys. Rev. 115, 1546 (1959).CrossRefGoogle Scholar
12Chrenko, R. M., Tuft, R. E., and Strong, H. M., Nature 270, 141 (1977).CrossRefGoogle Scholar
13Prins, J. F., Nucl. Instrum. Methods Phys. Res. B 35, 484 (1988).Google Scholar
14Prins, J. F., Phys. Rev. B 38, 5576 (1988).CrossRefGoogle Scholar
15Sandhu, G. S., Swanson, M. L., and Chu, W. K., Appl. Phys. Lett. 55, 1397 (1989).CrossRefGoogle Scholar
16Fujimori, N., Imai, T., and Doi, A., Vacuum 36, 99 (1986).Google Scholar
17Mort, J., Kuhman, D., Machonkin, M., Morgan, M., Jansen, F., Okumura, K., LeGrice, Y. M., and Nemanich, R. J., Appl. Phys. Lett. 55, 1121 (1989).CrossRefGoogle Scholar
18Okumura, K., Mort, J., and Machonkin, M., Appl. Phys. Lett. 57, 1907 (1990).Google Scholar
19Landstrass, M. I. and Ravi, K. V., Appl. Phys. Lett. 55, 1391 (1989).CrossRefGoogle Scholar
20Landstrass, M. I. and Ravi, K. V., Appl. Phys. Lett. 55, 975 (1989).Google Scholar
21Pearton, S. J., Corbett, J. W., and Shi, T. S., Appl. Phys. A 43, 153 (1987).CrossRefGoogle Scholar
22Sah, C. T., Sun, J. Y. C, and Tzou, J. J. T., Appl. Phys. Lett. 43, 204 (1983); J. Appl. Phys. 54, 5864 (1983).CrossRefGoogle Scholar
23Pankove, J. I., Carlson, D. E., Berkeyheiser, J. E., and Wance, R. O., Phys. Rev. Lett. 51, 2224 (1983); Pankove, J. I., Wance, R. O., and Berkeyheiser, J. E., Appl. Phys. Lett. 45, 1100 (1984); Pankove, J. I., Zanzucchi, P. J., Magee, C. W., and Lucovsky, G., Appl. Phys. Lett. 46, 421 (1985).Google Scholar
24Johnson, N. M. and Moyer, M. D., Appl. Phys. Lett. 46, 787 (1985); Johnson, N. M., Phys. Rev. B 31, 5525 (1985); Johnson, N. M., Appl. Phys. Lett. 47, 874 (1985).CrossRefGoogle Scholar
25Mikkelsen, J. C. Jr., Appl. Phys. Lett. 46, 882 (1985).Google Scholar
26Tavendale, A. J., Williams, A. A., and Pearton, S. J., Appl. Phys. Lett. 48, 590 (1986).Google Scholar
27Bergman, K., Stavola, M., Pearton, S. J., and Lopata, J., Phys. Rev. B 37, 2770 (1988).Google Scholar
28Assali, L. V. C. and Leite, J. R., Phys. Rev. Lett. 55, 980 (1985).CrossRefGoogle Scholar
29Johnson, N. M., Herring, C., and Chadi, D. J., Phys. Rev. Lett. 56, 769 (1986).Google Scholar
30Denteneer, P. J. H., Van de Walle, C. G., and Pantelides, S. T., Phys. Rev. B 39, 10809 (1989).CrossRefGoogle Scholar
31a. Sellschop, J. P. F., Abstracts of the Diamond Conference, Bristol, U.K., 1987, p. 45. b. Sellschop, J. P. F., Madiba, C. C. P., and Annegan, H. J., Nucl. Instrum. Methods 168, 529 (1980).Google Scholar
32a. Anderson, A. B., J. Chem. Phys. 60, 2477 (1974); 62, 1187 (1975). b. Anderson, A. B., Grimes, R. W., and Hong, S. Y., J. Phys. Chem. 91, 4245 (1987).CrossRefGoogle Scholar
33Mehandru, S. P., Anderson, A. B., and Angus, J. C., Prepr. Am. Chem. Soc. Div. Fuel Chem. 36 (3), 1053 (1991).Google Scholar
34Mehandru, S. P., Anderson, A. B., and Angus, J. C., J. Mater. Res. 7, 689 (1992).Google Scholar
35Mehandru, S. P. and Anderson, A. B., J. Mater. Res. 5, 2286 (1990); Carbon 28, 797 (1990).CrossRefGoogle Scholar
36Mehandru, S. P. and Anderson, A. B., Surf. Sci. 248, 369 (1991).CrossRefGoogle Scholar
37Angus, J. C., Li, Z., Sunkara, M., Gat, R., Anderson, A. B., Mehandru, S. P., and Geis, M. W., Proc. 2nd Int. Symp. on Diamond and Diamond-Like Materials, Washington, DC, May 5–10, 1991 (Electrochemical Society, Pennington, NJ, 1991), 91–98, pp. 125141.Google Scholar
38a. Lotz, W., J. Opt. Soc. Am. 60, 206 (1970). b. Clementi, E. and Raimondi, D. L., J. Chem. Phys. 38, 2686 (1963).CrossRefGoogle Scholar
39Nath, K. and Anderson, A. B., Solid State Commun. 66, 277 (1988); Phys. Rev. B 41, 5652 (1990).Google Scholar
40Messmer, R. P. and Watkins, G. D., Phys. Rev. B 7, 2568 (1973).Google Scholar
41Jackson, K., Pederson, M. R., and Harrison, J. G., Phys. Rev. B 41, 12641 (1990).Google Scholar
42Mainwood, A., J. Phys. C: Solid State Phys. 12, 2543 (1979).Google Scholar
43Sahoo, N., Mishra, K. C., van Rossum, M., and Dass, T. P., Hyperfine Interact. 35, 701 (1987).Google Scholar
44Bernholc, J., Kajihara, S. A., and Antonelli, A., in New DiamondScience and Technology, edited by Messier, R., Glass, J. T., Butler, J. E., and Roy, R. (Mater. Res. Soc. Symp. Int. Proc. NDST2C 3, Pittsburgh, PA, 1991), p. 923; Kajihara, S. A., Antonelli, A., Bernholc, J., and Car, R., Phys. Rev. Lett. 66, 2010 (1991).Google Scholar
45Briddon, P. R., Heggie, M. I., and Jones, R., as in Ref. 44, p. 63.Google Scholar
46Erwin, S. C. and Pickett, W. E., Phys. Rev. B 42, 11056 (1990).CrossRefGoogle Scholar
47Astier, M., Pottier, N., and Bourgoin, J. C., Phys. Rev. B 19, 5265 (1979).Google Scholar
48Bachelet, G. B., Baraff, G. A., and Schliiter, M., Phys. Rev. B 24, 4736 (1981).Google Scholar
49Shultz, P. A. and Messmer, R. P., Phys. Rev. B 34, 2532 (1986).Google Scholar
50Tavendale, A. J., Alexiev, D., and Williams, A. A., Appl. Phys. Lett. 47, 316 (1985).CrossRefGoogle Scholar
51Seager, C. H. and Anderson, R. A., Appl. Phys. Lett. 53, 1181 (1988).Google Scholar
52McMurray, J. E. and Lectka, T., Ace. Chem. Res. 25, 47 (1992).Google Scholar
53Pantelides, S. T., Appl. Phys. Lett. 50, 995 (1987).CrossRefGoogle Scholar