Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-25T04:35:28.451Z Has data issue: false hasContentIssue false

Microstructures of Bi-based oxide superconductors doped with Sb

Published online by Cambridge University Press:  31 January 2011

Yoshio Masuda
Affiliation:
Superconducting and Cryogenic Technology Center, Kobe Steel Ltd., 1-5-5, Takatsukadai Nishi-ku, Kobe 651-22, Japan
Rikuro Ogawa
Affiliation:
Superconducting and Cryogenic Technology Center, Kobe Steel Ltd., 1-5-5, Takatsukadai Nishi-ku, Kobe 651-22, Japan
Yoshio Kawate
Affiliation:
Superconducting and Cryogenic Technology Center, Kobe Steel Ltd., 1-5-5, Takatsukadai Nishi-ku, Kobe 651-22, Japan
Naohiro Hara
Affiliation:
Kobelco Institute Co., Wakinohama Chuo-Ku, Kobe 651, Japan
Tsuyoshi Tateishi
Affiliation:
Kobelco Institute Co., Wakinohama Chuo-Ku, Kobe 651, Japan
Get access

Abstract

Using Bi-based oxide superconductors of the Bi0.96Pb0.24-xSbxSr1.0Ca 1.1 Cu1.6Oy composition which were prepared by the sol-gel method, production of the high-Tc phase and also microstructures of the high-Tc and the low-Tc phases were investigated using the XRD method and the TEM technique. Two superconducting phases showed good linearities of shrinkages of the a, b, and c lattice parameters as the Sb content increased, and so it has been found that Sb can be included in superconducting crystal structures. However, all shrinkages were below 1%. The activation energy of Sb diffusion was estimated from time dependence of changes of the lattice parameters using the Arrhenius plots. Its energy was from 510 to 593 Kj/mol.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Hongbao, L., Xiaonong, Z., Yaozu, C., Guien, Z., Yaozhong, R., Zhaojia, C., and Yuheng, Z., Physica C 156, 804 (1988).CrossRefGoogle Scholar
2Hongbao, L., Liezhao, C., Ling, Z., Zhingiang, M., Xiaoxian, I., Zhidong, Y., Bai, X., Xiang, M., Guien, Z., Yaozhong, R., Zhaojia, C., and Yuheng, Z., Solid State Commun. 69, 867 (1989).Google Scholar
3Komatsu, T., Sato, R., Matusita, K., and Yamashita, T., Jpn. J. Appl. Phys. 28, LI159 (1989).CrossRefGoogle Scholar
4Maeda, T., Sakuyama, K., Yamauchi, H., and Tanaka, S., Physica C 159, 784 (1989).Google Scholar
5Sato, R., Komatsu, T., Matushi, K., and Yamashita, T., Jpn. J. Appl. Phys. 28, L1922 (1989).Google Scholar
6Xianglei, M., Hongbao, L., Quan, D., Weijie, Z., Zhiqiang, M., Ling, Z., Yu, W., and Yuheng, Z., Phys. Lett. A 138, 136 (1989).Google Scholar
7Masuda, Y., Tateishi, T., and Kawate, Y., Proc. ISS 89, 165 (1989).Google Scholar
8Masuda, Y., Ogawa, R., Kawate, Y., Tateishi, T., and Hara, N., J. Mater. Res. 7, 292 (1992).Google Scholar
9Ikeda, Y., presented at Chem-HTSC workshop, July 27-29, 1991, Karuizawa, Japan.Google Scholar
10Ohashi, K., Yada, S., Naka, S., Itoh, H., Kitaguchi, H., Takada, J., Tomii, Y., Ikeda, Y., and Takano, M., J. Jpn. Soc. Powder and Powder Metall. 37, 747 (1990) (in Japanese).Google Scholar
11Hongbao, L., Weiji, Z., Ling, Z., Zhiqiang, M., Biyou, L., Ming, Y., Liezhao, C., Zhaojia, C., Yaozhong, R., Dingkun, P., and Yuheng, Z., Physica C 159, 665 (1989).Google Scholar
12Kijima, N., Gronsky, R., Endo, H., Oguri, Y., McKernan, S.K., and Zettl, A., Appl. Phys. Lett. 58, 188 (1991).Google Scholar
13Chen, N., Shi, D., and Goretta, K.C., J. Appl. Phys. 66, 2485 (1989).Google Scholar
14Matsui, Y., Takekawa, S., Nozaki, H., Umezono, A., Takayama-Muromachi, E., and Horiuchi, S., Jpn. J. Appl. Phys. 27, L1241 (1988).Google Scholar
15Ikeda, Y., Takano, M., Hiroi, Z., Oda, K., Kitaguchi, H., Takada, J., Miura, Y., Takeda, Y., Yamamoto, O., and Mazaki, H., Jpn. J. Appl. Phys. 27, L2067 (1988).CrossRefGoogle Scholar