Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-21T04:17:01.272Z Has data issue: false hasContentIssue false

Microstructure studies of potassium hexatitanate whiskers

Published online by Cambridge University Press:  31 January 2011

G. L. Li
Affiliation:
Shanghai Institute of Nuclear Research, Chinese Academy of Sciences, Shanghai 201800, People's Republic of China, and Laboratory of Atomic Imaging of Solids, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, People's Republic of China
M. Liu
Affiliation:
Department of Metal Materials, Sichuan University (West), Chengdu 610065, People's Republic of China
G. H. Wang
Affiliation:
National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
Get access

Abstract

Microstructures of potassium hexatitanate (K2Ti6O13) whiskers prepared by calcination of KF and TiO2 mixture were studied through high-resolution electron microscopy. The rod axis of a K2Ti6O13 whisker is along the [010] direction. These whiskers normally have a lamellar structure in their longitudinal direction, and adjacent lamellae usually have the same crystallographic orientation. Each lamella might be further divided into several fine layers with a width on the nanometer scale in the same crystallographic orientation. The whisker can be split in the longitudinal direction along either the boundary between two lamellae or the weak binding crystal plane, such as (100) and (201) planes. The mechanisms for the formation of lamella and layer structures and for the splitting of whiskers are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Andersson, S. and Wadsley, A.D, Acta Crystallogr. 14, 1245 (1961).CrossRefGoogle Scholar
2.Dion, M., Piffard, Y., and Tournoux, M., J. Inorg. Nucl. Chem. 40, 917 (1978).Google Scholar
3.Izawa, H., Kikkawa, S., and Koizumi, M., J. Solid State Chem. 69, 336 (1987).Google Scholar
4.Andersson, S. and A.Wadsley, D., Acta Crystallogr. 15, 194 (1962).CrossRefGoogle Scholar
5.Sasaki, T. and Fujiki, Y., J. Solid State Chem. 83, 45 (1989).CrossRefGoogle Scholar
6.Sasaki, T., Wantanabe, M., Fujiki, Y., and Kitami, Y., J. Solid State Chem. 105, 481 (1993).Google Scholar
7.Ogura, S., Kohno, M., Sato, K., and Inoue, Y., Appl. Surf. Sci. 121/122, 521 (1997).Google Scholar
8.Suganuma, K., Fujita, T., Niihara, K., and Suzuki, N., J. Mater. Sci. Lett. 8, 808 (1989).Google Scholar
9.Li, J.H, Ning, X.G, Ye, H.Q, Pan, J., and Fukunaga, H., J. Mater. Sci. 32, 543 (1997).Google Scholar
10.Tjiong, S.C and Meng, Y.Z, Polymer 40, 1109 (1999).Google Scholar
11.Xue, Q.J, Zhang, Z.Z, Liu, W.M, and Shen, W.C, J. Appl. Polymer Sci. 69, 1393 (1998).Google Scholar
12.Lee, H.K, Shim, J.P, Shim, M.J, Kim, S.W, and Lee, J.S, Mater. Chem. Phys. 45, 243 (1996).CrossRefGoogle Scholar
13.Muto, F. and Kunitomi, M., Kogyo Kagaku Zasshi 65, 1775 (1962).Google Scholar
14.Shimizu, T., Hashimoto, K., and Yanagida, H., Yogyo Kyokaishi 84, 36 (1976).Google Scholar
15.Saito, H. and Tagusagawa, N., Kogyo Kagaku Zasshi 67, 297 (1964).Google Scholar
16.Fujiki, Y. and Izumi, F., Yogyo Kyokaishi 85, 155 (1977).CrossRefGoogle Scholar
17.Shimizu, T., Yanagida, H., and Hashimoto, K., Yogyo Kyokaishi 85, 567 (1977).Google Scholar
18.Lee, J.K, Lee, K.H, and Kim, H., J. Mater. Sci. 31, 5493 (1996).CrossRefGoogle Scholar
19.Choy, J.H and Han, Y.S, Mater. Lett. 34, 111 (1998).CrossRefGoogle Scholar
20.Watanabe, A., Tacheuchi, Y., and Saeki, G., J. Am. Ceram. Soc. 68, C-308 (1985).Google Scholar
21.Li, G.L, Wang, G.H, and Hong, J.M, Mater. Res. Bull. 34, 2341 (1999).Google Scholar
22.Oota, T., Yamai, I., and Yokoyama, M., J. Cryst. Growth 66, 262 (1984).CrossRefGoogle Scholar