Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-16T23:10:53.644Z Has data issue: false hasContentIssue false

Microstructure of PbTiO3 thin films deposited on (001)MgO by MOCVD

Published online by Cambridge University Press:  18 February 2016

Y. Gao*
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
G. Bai
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
K.L. Merkle
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
Y. Shi
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
H.L.M. Chang
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
Z. Shen
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
D.J. Lam
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
*
a)Current address: Department of Materials Engineering, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801. Address correspondence to this author.
Get access

Extract

PbTiO3 thin films deposited on (001)MgO by the MOCVD technique have been characterized by x-ray diffraction and transmission electron microscopy (TEM). The PbTiO3 films grown at temperatures below Tc (~500 °C) are c-axis oriented polycrystals, while the PbTiO3 films grown at temperatures above Tc are single crystals with a bi-layer structure at room temperature. The top layers of the films near the free surface are c-axis oriented with the orientation relationship of (001)[100]PbTiO3||(001)[100]MgO. The bottom layers of the films near the substrate are a-axis oriented with the orientation relationship of The formation of the bi-layer microstructure of the PbTiO3 films will be discussed in terms of the effect of the cooling rate and the substrate on the phase transition of PbTiO3 from the cubic to the tetragonal phase. When the PbTiO3 films were grown with a large excess of the Pb precursor vapor in the vapor mixture, PbO and PbTiO3 coexisted in the films. Both PbO and PbTiO3 were grown epitaxially on (00l)MgO. The epitaxial orientation relationships were found to be (100) [001]PbO||(001) [100]MgO and (001)[100]PbTiO3||(001)[100]MgO. The 90° domains were observed in the PbTiO3 films deposited at temperatures above Tc. The domain walls are the ﹛101﹜ and ﹛011﹜ twin boundaries, which were formed during the phase transition from the cubic to the tetragonal phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sheppard, L. M., Ceram. Bull. 71, 85 (1992).Google Scholar
2. Iijima, K., Tomita, Y., Takayama, R., and Ueda, I., J. Appl. Phys. 60, 361 (1986).CrossRefGoogle Scholar
3. Ogawa, T., Senda, A., and Kasanami, T., Jpn. J. Appl. Phys. 30, 2145 (1991).CrossRefGoogle Scholar
4. Kwak, B.S., Boyd, E.P., and Erbil, A., Appl. Phys. Lett. 53, 1702 (1988).CrossRefGoogle Scholar
5. Sakashita, Y., Ono, T., and Segawa, H., J. Appl. Phys. 69, 8352 (1991).CrossRefGoogle Scholar
6. Okada, M., Tominaga, K., Araki, T., Katayama, S., and Sakashita, Y., Jpn. J. Appl. Phys. 26, 718 (1990).CrossRefGoogle Scholar
7. Okada, M., Takai, S., Amemiya, M., and Tominaga, K., Jpn. J. Appl. Phys. 28, 1030 (1989).CrossRefGoogle Scholar
8. Nakagawa, T., Yamaguchi, J., Okuyama, M., and Hamakawa, Y., Jpn. J. Appl. Phys. 21, L665 (1982).Google Scholar
9. Chang, H.L.M., You, H., Parker, J.C., Guo, J., Gao, Y., and Lam, D.J., High Performance Ceramic Films and Coatings, edited by Vincenzini, P. (Elsevier Science Publishers, B. V., 1991), p. 161.Google Scholar
10. Chang, H. L. M., You, H., Guo, J., and Lam, D. J., Appl. Surf. Sci. 48/49, 12 (1991).CrossRefGoogle Scholar
11. Gao, Y., Merkle, K.L., Chang, H.L., Zhang, T.J., and Lam, D.J., Philos. Mag. A 65, 1103 (1992).CrossRefGoogle Scholar
12. Gao, Y., Merkle, K. L., Chang, H. L. M., Zhang, T. J., and Lam, D. J., Mater, J.. Res. 6, 2417 (1991).Google Scholar
13. Wyckoff, R.W.G., Crystal Structures (John Wiley & Sons, New York, 1964), p. 400.Google Scholar
14. Kingon, A. I., Hsieh, K.Y., King, L.L.H., Rou, S.H., Bachmann, K.J., and Davis, R. F., in Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), p. 49.Google Scholar
15. Bai, G.R., Chang, H.L.M., Kim, H.K., Foster, C.M., and Lam, D.J., Appl. Phys. Lett, (in press).Google Scholar