Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-20T19:26:48.606Z Has data issue: false hasContentIssue false

Microstructure development in furfuryl resin-derived microporous glassy carbons

Published online by Cambridge University Press:  31 January 2011

Kristen Persels Constant
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Jonq-Ren Lee
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Yet-Ming Chiang
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Get access

Abstract

The processing of microporous glassy carbon derived from furfuryl alcohol and ethylene glycol mixtures has been studied, with emphasis on understanding and controlling microstructure development. It is shown that this system exhibits a polymerization-dependent miscibility gap, and that the carbon microstructure is determined by phase separation in the liquid state. Variations in carbon microstructure with composition and thermal history can be understood in terms of the time-dependent immiscibility and resulting phase separation.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Fitzer, E., Schaeffer, W., and Yamada, S., Carbon 7, 643648 (1969).CrossRefGoogle Scholar
2.Eckert, H., Levendis, Y. A., and Flagan, R. C., J. Phys. Chem. 92, 50115019 (1988).Google Scholar
3.Hucke, E. E., “Method of producing carbonaceous bodies and the products thereof,” U.S. Pat. No. 3,859,421, Jan. 7, 1975.Google Scholar
4.Chiang, Y-M., Messner, R. P., Terwilliger, C. D., and Behrendt, D. R., Mater. Sci. Eng. A144, 63 (1991).Google Scholar
5.Hozer, L., Lee, J-R., and Chiang, Y-M., Mater. Sci. Eng. A195, 131143 (1995).CrossRefGoogle Scholar
6.Hozer, L., Lee, J. R., and Chiang, Y-M., in Advanced Synthesis and Processing of Composites and Advanced Ceramics, edited by Logan, K. V., Munir, Z. A., and Spriggs, R. M. (Ceram. Trans. 56, The American Ceramic Society, Westerville, OH, 1995). p. 158.Google Scholar
7.Hozer, L. and Chiang, Y-M., unpublished research.Google Scholar
8.Fitzer, E. and Schafer, W., Carbon 8, 353364 (1970).CrossRefGoogle Scholar
9.Vogel, W., Chemistry of Glass, 2nd ed. (Springer-Verlag, Berlin, 1994).Google Scholar
10.Nose, T., Phase Trans. 8, 245260 (1987).CrossRefGoogle Scholar
11.Cahn, J. W. and Charles, R. J., Phys. Chem. Glasses 6, 181 (1965).Google Scholar
12.Haller, W., J. Chem. Phys. 42, 686 (1965).CrossRefGoogle Scholar
13.Mazurin, O. V. and Porai-Koshits, E. A., in Phase Separation in Glass, edited by Mazurin, O. V. and Porai-Koshits, E. A. (North-Holland, 1984), p. 166.Google Scholar
14.Binder, K., J. Phys. Chem. Solids 79, 63876409 (1983).CrossRefGoogle Scholar
15.Hashimoto, T., Takenaka, M., and Jinnai, H., Polymer Commun. 30, 177179 (1989).Google Scholar
16.Pincus, P., J. Chem. Phys. 74, 19962000 (1981).Google Scholar
17.Hashimoto, T., Itakura, M., and Hasegawa, H., J. Chem. Phys. 85, 61186128 (1986).CrossRefGoogle Scholar
18.Takenaka, M., Izumitani, T., and Hashimoto, T., Macromolecules 20, 22572264 (1987).CrossRefGoogle Scholar
19.Nakanishi, K. and Soga, N., J. Am. Ceram. Soc. 74, 2518–2530 (1991).CrossRefGoogle Scholar
20.Yamanaka, K., Takagi, Y., and Inoue, T., Polymer 60, 18391844 (1989).CrossRefGoogle Scholar
21.Chiang, Y-M. and Kingery, W. D., J. Am. Ceram. Soc. 66 (9), C171172 (1983).Google Scholar