Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-23T11:46:38.475Z Has data issue: false hasContentIssue false

The microstructure and stoichiometry of pyrite FeS2−x

Published online by Cambridge University Press:  31 January 2011

S. Fiechter*
Affiliation:
Hahn-Meitner-Institut, Bereich “Photochemische Energieumwandlung” Glienicker Staβe 100, D-1000 Berlin 39, Germany
M. Birkholz
Affiliation:
Hahn-Meitner-Institut, Bereich “Photochemische Energieumwandlung” Glienicker Staβe 100, D-1000 Berlin 39, Germany
A. Hartmann
Affiliation:
Hahn-Meitner-Institut, Bereich “Photochemische Energieumwandlung” Glienicker Staβe 100, D-1000 Berlin 39, Germany
P. Dulski
Affiliation:
Hahn-Meitner-Institut, Bereich “Photochemische Energieumwandlung” Glienicker Staβe 100, D-1000 Berlin 39, Germany
M. Giersig
Affiliation:
Hahn-Meitner-Institut, Bereich “Photochemische Energieumwandlung” Glienicker Staβe 100, D-1000 Berlin 39, Germany
H. Tributsch
Affiliation:
Hahn-Meitner-Institut, Bereich “Photochemische Energieumwandlung” Glienicker Staβe 100, D-1000 Berlin 39, Germany
R.J.D. Tilley
Affiliation:
School of Engineering, University of Wales, College of Cardiff, Cardiff CF2 1XH, Great Britain
*
a)Address correspondence to this author.
Get access

Abstract

Both natural and synthetic crystals of pyrite, FeS2−x, have been analyzed chemically and examined structurally by transmission electron microscopy and x-ray powder diffraction. Chemical analysis and density measurements have shown the synthetic crystals, grown at 850 K, are frequently deficient in sulfur, with a composition of FeS2−x with x ⋚ 0.15. From a refinement of the pyrite structure using the integral intensities of the x-ray powder pattern, a variation in the sulfur population parameter was obtained ranging from 0.87(2) to 1.03(3). A correlation according to Vegard's rule between the population factor and the lattice parameter a0 has been proven. Transmission electron microscope examination revealed that the crystals did not contain a significant population of disorder defects which may account for this apparent sulfur deficit. Therefore the nonstoichiometry in pyrite has to be interpreted in terms of S vacancies which can be understood as the tendency of the material to reduce the high anion content in the unit cell. The structural nature of nonstoichiometric pyrite is discussed in relationship to other related disulfides.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ennaoui, A., Fiechter, S., Jaegermann, W., and Tributsch, H., J. Electrochem. Soc. 133, 98 (1986).CrossRefGoogle Scholar
2.Wyckoff, R. W. G., Crystal Structures (Interscience Publishers, John Wiley & Sons, New York, 1963), Vol. 1.Google Scholar
3.Birkholz, M., Ph.D. Thesis, Freie Universität Berlin, 1990.Google Scholar
4.Ennaoui, A., Fiechter, S., Goslowsky, H., and Tributsch, H., J. Electrochem. Soc. 132, 1579 (1985).Google Scholar
5.Ennaoui, A., Fiechter, S., Smestad, G., and Tributsch, H., Energy and the Environment into the 1990s (Pergamon Press, Oxford, 1990), Vol. 1, pp. 458464.CrossRefGoogle Scholar
6.Schieck, R., Hartmann, A., Fiechter, S., Könenkamp, R., and Wetzel, H., J. Mater. Res. 5, 1567 (1990).Google Scholar
7.Scheer, R., to be published.Google Scholar
8.Kou, W. W. and Seehra, M. S., Phys. Rev. B 18, 7062 (1978).CrossRefGoogle Scholar
9. Ch. Pettenkofer, private communication.Google Scholar
10.Lutz, H. D., Schneider, G., and Kliche, G., J. Phys. Chem. Solids 46, 437 (1985).CrossRefGoogle Scholar
11.Alonso-Vante, N., Chatzitheodorou, G., Fiechter, S., Mgoduka, N., Poulios, I., and Tributsch, H., Solar Energy Materials 18, 9 (1988).CrossRefGoogle Scholar
12.Krishnan, R. S., Thermal Expansion of Crystals (Pergamon Press, New York, 1973).Google Scholar
13.Kühne, H-M., Ph.D. Thesis, Freie Universität Berlin, 1985.Google Scholar
14.Hartmann, A., Ph.D. Thesis, Technische Universität Berlin, 1990.Google Scholar
15.Fiechter, S., Mai, J., Ennaoui, A., and Szacki, W., J. Cryst. Growth 78, 438 (1986).Google Scholar
16.Vaugham, D. J. and Craig, J. R., Mineral Chemistry of Metal Sulfides (Cambridge University Press, Cambridge, 1978), p. 96.Google Scholar
17.Chernyshev, L. V., Anfilogov, V. N., Pastushkova, T. M., and Suturina, T. A., Econ. Geol. USSR 3, 50 (1968).Google Scholar
18.Fleming, J. G., J. Cryst. Growth 92, 287 (1988).CrossRefGoogle Scholar
19.Luck, J., Hartmann, A., and Fiechter, S., Fresenius Z. Anal. Chem. 334, 441 (1989).Google Scholar
20.Linossier, J. L., Fraysse, M., and Ruffier, J. E., Analusis 13, 238 (1985).Google Scholar
21.Alexander, L. E. and Klug, H. P., in X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials (Wiley Interscience, New York, 1974).Google Scholar
22.Puff, W., Balogh, A. G., Birkholz, M., and Fiechter, S., Proc. 9th Int. Conf. on Positron Annihilation, 26–31 August 1991, Szombathely, Hungary (Trans. Tech. Publ. Ltd., Aedermannsdorf, Switzerland, 1992), p. 1177.Google Scholar
23. Ch. Höpfner, private communication.Google Scholar
24.Buerger, M. J., Am. Mineralogist 19, 37 (1934).Google Scholar
25.Chattopadhyay, T. K. and von, H. G.Schnering, Z. f. Kristallographie 167, 1 (1984).CrossRefGoogle Scholar
26.Koto, K., Morimoto, N., and Gyobu, A., Acta. Cryst. B 31, 2759 (1975).CrossRefGoogle Scholar
27.Birkholz, M., Fiechter, S., Hartmann, A., and Tributsch, H., Phys. Rev. B 43, 11926 (1991).CrossRefGoogle Scholar
28.Juza, R. and Biltz, W., Z. Anorg. Allg. Chem. 205, 273 (1932).CrossRefGoogle Scholar
29.Flynn, C. P., Point Defects and Diffusion (Clarendon Press, Oxford, 1972), pp. 34 and 64.Google Scholar