Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-21T18:41:09.106Z Has data issue: false hasContentIssue false

Microstructure and Chemistry of Nonstoichiometric (Ba,Sr)TiO3 Thin Films Deposited by Metalorganic Chemical Vapor Deposition

Published online by Cambridge University Press:  31 January 2011

Igor Levin
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Richard D. Leapman
Affiliation:
Bioengineering and Physical Science Program, Office of Research Services, National Institutes of Health, Bethesda, Maryland 20892
Debra L. Kaiser
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Get access

Abstract

The microstructure and chemistry of (Ba,Sr)TiO3 thin films deposited on Pt/SiO2/Si substrates by metalorganic chemical vapor deposition were studied using highresolution transmission electron microscopy and quantitative spectrum imaging in electron energy loss spectroscopy. The grain boundaries in all films with overall Ti content ranging from 50.7% to 53.4% exhibit a significant increase in Ti/Ba ratio as compared to the grain interiors. The results suggest that the deviations of Ti/(Ba + Sr) ratio from the stoichiometric value of unity are accommodated by the creation of Ba/Sr vacancies, which segregate to the grain boundary regions. The films with Ti contents equal to or greater than 52% additionally contained an amorphous Ti-rich phase at some grain boundaries and multiple grain junctions; the amount of this phase increases with increasing overall Ti content. The analysis indicates that the amorphous phase can only partially account for the significant drop in dielectric permittivity accompanying increases in the Ti/(Ba + Sr) ratio.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kawahara, T., Yamamuka, M., Makita, T., Naka, J., Yuuki, A., Mikami, N., and Ono, K., Jpn. J. Appl. Phys. 33, 5129 (1994).CrossRefGoogle Scholar
2.van Buskirk, P.C., Roeder, J.F., and Bilodeau, S., Integr. Ferroelectr. 10, 9 (1995).CrossRefGoogle Scholar
3.Yoshida, M., Yamaguchi, H., Sakuma, T., and Miyasaka, Y., J. Electrochem. Soc. 142, 244 (1995).CrossRefGoogle Scholar
4.Horikawa, T., Mikami, N., Makita, T., Tanimura, J., Kataoka, M., Sato, K., and Nunoshita, M., Jpn. J. Appl. Phys. 32, 4126 (1993).CrossRefGoogle Scholar
5.Yamamichi, S., Yabuta, J., Sakuma, T., Miyasaka, Y., Appl. Phys. Lett. 64, 1644 (1994).CrossRefGoogle Scholar
6.Hwang, C.S., Park, S.O., Cho, H-J., Kang, C.S., Lee, S.I., and Lee, M.Y., Appl. Phys. Lett. 67, 2819 (1995).CrossRefGoogle Scholar
7.Horwitz, J.S., Chang, W., Carter, A.C., Pond, J.M., Kirchoefer, S.W., Chrisey, D.B., Levy, J., and Hubert, C., Integrated Ferroelectrics 22, 799 (1998).CrossRefGoogle Scholar
8.Kingon, A.I., Streiffer, S.K., Basceri, C., and Summerfelt, S.R., MRS Bull. 21(7), 46 (1996).CrossRefGoogle Scholar
9.Basceri, C., Lash, S.E., Parker, C.B., Streiffer, S.K., Kingon, A.I., Grossman, M., Hoffman, S., Schumacher, M., Waser, R., Bilodeau, S., Carl, R., van Buskirk, P.C., and Summerfelt, S.R., in Ferroelectric Thin Films VI, edited by Treece, R.E., Jones, R.E., Foster, C.M., Desu, S.B., and Yoo, I.K. (Mater. Res. Soc. Symp. Proc. 493, Warrendale, PA, 1998), pp. 914.Google Scholar
10.Streiffer, S.K., Basceri, C., Parker, C.B., Lash, S.E., and Kingon, A.I., J. Appl. Phys. 86, 4565 (1999).CrossRefGoogle Scholar
11.Stemmer, S., Streiffer, S.K., Browning, N.D., and Kingon, A.I., Appl. Phys. Lett. 74, 2432 (1999).CrossRefGoogle Scholar
12.Levin, I., Leapman, R.D., Kaiser, D.L., van Buskirk, P.C., Bilodeau, S., and Carl, R., Appl. Phys. Lett. 75, 1299 (1999).CrossRefGoogle Scholar
13.van Buskirk, P.C., Roeder, J.F., and Bilodeau, S., Integr. Ferroelectr. 10, 9 (1995).CrossRefGoogle Scholar
14.Bilodeau, S.M., Carl, R., van Buskirk, P.C., Roeder, J.F., Basceri, C., Lash, S.E., Parker, C.B., Streiffer, S.K., and Kingon, A.I., J. Korean Phys. Soc. 32, S1591 (1998).Google Scholar
15.Leapman, R.D. and Newbury, D.E., Anal. Chem. 65, 2409 (1993).CrossRefGoogle Scholar
16.Chiang, Y-M. and Takagi, T., J. Am. Ceram. Soc. 73, 3278 (1990).CrossRefGoogle Scholar
17.Desu, S.B. and Payne, D.A., J. Am. Ceram. Soc. 73, 3391 (1990).CrossRefGoogle Scholar
18.DeHoff, R.T. and Rhines, F.N., Quantitative Microscopy (McGraw-Hill, New York, 1968).Google Scholar
19.Chiou, B.S. and Lin, M.C., Thin Solid Films 248, 247 (1994).CrossRefGoogle Scholar
20.Shi, Z.Q., Jia, Q.X., and Anderson, W.A., J. Vac. Sci. Technol. A, 10, 733 (1992).CrossRefGoogle Scholar
21.Funakubo, H., Takeshima, Y., Nagano, D., Shinozaki, K., and Mizutani, N., J. Mater. Res. 13, 3512 (1998).CrossRefGoogle Scholar