Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-07-07T10:26:36.091Z Has data issue: false hasContentIssue false

Microstructural studies of boron nitride films deposited by microwave plasma-assisted chemical vapor deposition by using trimethyl borazine precursor

Published online by Cambridge University Press:  31 January 2011

A. Ratna Phani*
Affiliation:
Department of Physics, University of L'Aquila, L'Aquila, 67100, Italy
Get access

Abstract

Thin films of cubic boron nitride (c-BN) were synthesized using an organometallic precursor trimethylborazine (TMB) which contains both boron and nitrogen in 1 : 1 stoichiometric ratio. The films were deposited at different temperatures ranging from 300 to 500 °C at a pressure of 2 Torr and at 360 W microwave power, using N2 as carrier gas. The deposited films were characterized by Fourier transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), and scanning electron microscopy (SEM), which reveal the presence of amorphous BN and crystalline c-BN in varying proportions. The x-ray diffraction pattern of the deposited films showed a strongest peak at 2θ = 57.1° where the interplanar distance value, d = 2.06 Å, agreed well with the (111) crystallographic orientation of c-BN phase.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Satou, M. and Fugimoto, F., Jpn. J. Appl. Phys. 22, 2171 (1983).CrossRefGoogle Scholar
2.Inagawa, K., Watanabe, K., Ohsone, H., Saitoh, K., and Itoh, A., J. Vac. Sci. Technol. A5, 2696 (1987).CrossRefGoogle Scholar
3.Ikeda, T., Kawate, Y., and Hirai, Y., J. Vac. Sci. Technol. A8, 2168 (1990).Google Scholar
4.Ikeda, T., Kawate, K., and Hirai, Y., J. Vac. Sci. Technol. A8 (4), 3168 (1990).CrossRefGoogle Scholar
5.Ikeda, T. and Harai, Y., Chem. Abstacts 12, 14632a (1990).Google Scholar
6.Komatsa, S., Yoshida, T., and Akashi, K., Proc. 9th Symp. on ISIAT, Tokyo (1985), p. 421.Google Scholar
7.Mieno, M. and Yoshida, T., Jpn. J. Appl. Phys. 29, L1175 (1990).Google Scholar
8.Rother, B. and Weissmantel, C., Phys. Status Solidi A87, K119 (1985).CrossRefGoogle Scholar
9.Mitterner, C., Rodhammer, P., Stori, H., and Jeglitch, R., J. Vac. Sci. Technol. A7 (4), 2646 (1989).Google Scholar
10.Nakamori, T., Chem. Abstracts 110, 17307t (1989).Google Scholar
11.Yamashita, N. and Wada, T., Chem. Abstracts 112, 243569c (1990).Google Scholar
12.Gissler, W., Haupt, J., Crabb, T. A., Gibbson, P. N., and Rickerby, D. G., Mater. Sci. Engg. A139, 264 (1991).Google Scholar
13.Burat, O., Boucheir, D., Stambouli, V., and Gautherin, G., J. Appl. Phys. 68 (6), 2780 (1990).CrossRefGoogle Scholar
14.Ikeda, T., Appl. Phys. Lett. 61 (7), 786 (1992).CrossRefGoogle Scholar
15.Wada, T. and Yamashita, N., J. Vac. Sci. Technol. A10 (3), 515 (1992).CrossRefGoogle Scholar
16.Ichnose, Y., Saitoh, H., and Ishiguro, T., Proc. 11th Symp. on ISAIT, Tokyo (1987), p. 469.Google Scholar
17.Chayahara, A., Yokahoma, H., Imura, T., and Osaka, Y., Jpn. J. Appl. Phys. 26, L1435 (1987).CrossRefGoogle Scholar
18.Ratna Phani, A., Devi, Sarala, Roy, Sujit, and Rao, V.J., JCS Chem. Commun. 6, 684 (1990).Google Scholar
19.Sarala Devi, G., Roy, Sujit, and Rao, V. J., Solid State Commun. 87, 67 (1993).CrossRefGoogle Scholar
20.Ratna Phani, A., Roy, Sujit, and Rao, V. J., Thin Solid Films 258, 21 (1995).CrossRefGoogle Scholar
21.Ratna Phani, A., Bull. Mater. Sci. 219, 17 (1994).Google Scholar
22.Ratna Phani, A., Manorama, S., and Rao, V. J., Semicond. Sci. Technol. 10, 1520 (1995).CrossRefGoogle Scholar
23.Manorama, S., Choudari, G. N., and Rao, V. J., J. Phys. D: Appl. Phys. 26, 1763 (1993).CrossRefGoogle Scholar
24.Ratna Phani, A., Choudari, G. N., and Manorama, S., J. Solid State Chem. (in press).Google Scholar
25.Schlesinger, H. I., Harvitz, L., and Burg, A. B., J. Am. Chem. Soc. 58, 409 (1935).CrossRefGoogle Scholar
26.Ratna Phani, A. and Rao, V. J., J. Solid State Chem. (in press).Google Scholar
27.Gaskill, D. K., Bottka, N., and Lin, M. C., J. Cryst. Growth 77, 418 (1986).Google Scholar
28.Nomura, H., Meikle, S., Nakanishi, Y., and Hatanaka, Y.J. Appl. Phys. 69, 990 (1991).CrossRefGoogle Scholar
29.Interrante, L. V., Lee, W., McConell, M., Lewis, N., and Hall, E., J. Electrochem. Soc. 136, 472 (1989).Google Scholar
30.Komatsu, S. and Moriyoshi, Y., J. Phys. D: Appl. Phys. 24, 1687 (1991).Google Scholar
31.Marshall, R., Mitra, S. J., Geilisse, S. J., Plendl, J. N., and Mansur, L. C., Bull. Am. Phys. Soc. 10, 370 (1965).Google Scholar
32.Geilisse, P. J., Mitra, S. J., Plendl, J. N., Griffs, R. D., Mansur, L. C., Marshall, R., and Pascoe, F. A., Phys. Rev. 155, 173 (1967).Google Scholar
33.Komatsu, S., Moriyoshi, Y., Kamatsu, M., and Yamada, K., J. Appl. Phys. 70, 7078 (1991).CrossRefGoogle Scholar
34.Lin, P., Deshpandey, C., Doerr, H. J., Bunshah, R. F., Chopra, K. L., and Vankar, V., 14th International Conference on Metallurgical Coatings, San Diego, CA, March 23–27 (1987).Google Scholar