Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T17:29:24.630Z Has data issue: false hasContentIssue false

Microstructural features of Al-implanted 4H–SiC

Published online by Cambridge University Press:  06 January 2012

C. M. Wang
Affiliation:
Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352
Y. Zhang
Affiliation:
Division of Ion Physics, Ångström Laboratory, Uppsala University, Box 534, SE-751 21, Sweden
W. J. Weber
Affiliation:
Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352
W. Jiang
Affiliation:
Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352
L. E. Thomas
Affiliation:
Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352
Get access

Abstract

The microstructural features of highly damaged 4H–SiC implanted with Al22+ ions at 450 K were studied using transmission electron microscopy (TEM) and electron energy-loss spectroscopy. Conventional TEM images reveal that the crystalline SiC domains are highly strained/distorted when the relative disorder on the Si sublattice ranges between about 0.4 and 0.8, as determined by Rutherford backscattering spectrometry in channeling geometry. As the relative disorder approaches 1.0, the high strain contrast appears to be relieved, and localized amorphized domains are observed. Plasmon-loss energy shows a red shift following the implantation, and the magnitude of the red shift increases with increasing relative disorder. Based on the red shift, the estimated volume expansion is approximately 8% for highly damaged crystalline SiC and approximately 16% for the amorphous state. Energy-loss near-edge-structure of both the C and Si K edge reveals the existence of Si–Si and C–C bonding in the Al22+ implanted SiC.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Capano, M.A. and Trew, R.J., MRS Bull. 22, 19 (1997).CrossRefGoogle Scholar
Giancarli, L., Bonal, J.P., Caso, A., Morois, G. Le, Moorley, N.B., and Salavy, J.F., Fusion Eng. Des. 41, 165 (1998).CrossRefGoogle Scholar
Kim, B.G., Choi, Y., Lee, J.W., Sohn, D.S., and Kim, G.M., J. Nucl. Mater. 281, 163 (2000).CrossRefGoogle Scholar
Wesch, W., Nucl. Instr. Meth. Phys. Res. B 116, 305 (1996).CrossRefGoogle Scholar
Jiang, W., Weber, W.J., Wang, C.M., and Zhang, Y., J. Mater. Res. 17, 271 (2002).CrossRefGoogle Scholar
Zhang, Y., Weber, W.J., Jiang, W., Hallén, A., and Possnert, G., J. Appl. Phys. 91, 6388 (2002).CrossRefGoogle Scholar
Weber, W.J. and Wang, L.M., Nucl. Instrum. Meth. Phys. Res. B 106, 298 (1995).CrossRefGoogle Scholar
Weber, W.J., Wang, L.M., and Yu, N., Nucl. Instrum. Meth. Phys. Res. B 116, 322 (1996).CrossRefGoogle Scholar
Weber, W.J., Nucl. Instr. Meth. Phys. Res. B 166/167, 98 (2000).CrossRefGoogle Scholar
Wendler, E., Helt, A., and Wesch, W., Nucl. Instr. Meth. Phys. Res. B 141, 105 (1998).CrossRefGoogle Scholar
Weber, W.J., Wang, L.M., Yu, N., and Hess, N.J., Mater. Sci. Eng. A 253, 62 (1998).CrossRefGoogle Scholar
Zinkle, S.J. and Snead, L.L., Nucl. Instr. Meth. Phys. Res. B 116, 92 (1996).CrossRefGoogle Scholar
Kaiser, U., Muller, D.A., Grazul, J.L., Chuvilin, A., and Kawasaki, M., Nature Mater. 1, 102 (2002).CrossRefGoogle Scholar
Snead, L.L. and Hay, J.C., J. Nucl. Mater. 273, 213 (1999).CrossRefGoogle Scholar
Snead, L.L., Zinkle, S.J., Hay, J.C., and Osborne, M.C., Nucl. Instr. Meth. Phys. Res. B 141, 123 (1998).CrossRefGoogle Scholar
Asaoka, N., Muto, S., and Tanabe, T., Diamond Relat. Mater. 10, 1251 (2001).CrossRefGoogle Scholar
Muto, S., Tanabe, T., Shibayama, T., and Takahashi, H., Nucl. Instr. Meth. Phys. Res. B 191, 519 (2002).CrossRefGoogle Scholar
Devanathan, R. and Weber, W.J., J. Nucl. Mater. 278, 258 (2002).CrossRefGoogle Scholar
Gao, F. and Weber, W.J., Phys. Rev. B 66, 024106 (2002).CrossRefGoogle Scholar
Weber, W.J., Yu, N., Wang, L.M., and Hess, N.J., J. Nucl. Mater. 244, 258 (1997).CrossRefGoogle Scholar
Weber, W.J., Yu, N., Wang, L.M., and Hess, N.J., in Thermodynamics and Kinetics of Phase Transformations, edited by Im, J.S., Park, B., Greer, A.L., and Stephenson, G.B. (Mater. Res. Soc. Symp. Proc. 398, Pittsburgh, PA, 1996), p. 351.Google Scholar
Bolse, W., Nucl. Instr. Meth. Phys. Res. B 148, 83 (1999).CrossRefGoogle Scholar
Perez-Rodriguez, A., Pacaud, Y., Calvo-Barrio, L., Serrre, C., Skorupa, W., and Morante, J.R., J. Electronic Mater. 25, 541 (1996).CrossRefGoogle Scholar
Ishimaru, M., Bae, I.T., Hirotsu, Y., Matsumura, S., and Sickafus, K.E., Phys. Rev. Lett. 89, 055502 (2002).CrossRefGoogle Scholar
Yuan, X. and Hobbs, L.W., Nucl. Instr. Meth. Phys. Res. B 191, 74 (2002).CrossRefGoogle Scholar
Zhang, Y., Weber, W.J., Jiang, W., Wang, C.M., Hallén, A., and Possnert, G., J. Appl. Phys. 93, 1954 (2003).CrossRefGoogle Scholar
Zhang, Y., Weber, W.J., Jiang, W., Hallén, A., and Possnert, G., Nucl. Instr. Meth. Phys. Res. B 195, 320 (2002).CrossRefGoogle Scholar
Feldman, L.C., Mayer, J.W., and Picraux, S.T., Materials Analysis by Ion Channeling (Academic Press, New York, 1982), p. 117.CrossRefGoogle Scholar
Holland, O.W., Fathy, D., Narayan, J., and Oen, O.S., Radiation Effects 90, 127 (1985).CrossRefGoogle Scholar
Persson, P.O.A., Hultman, L., Janson, M.S., Hallén, A., Yakimova, R., Panknin, D., and Skorupa, W., J. Appl. Phy. 92, 2501 (2002).CrossRefGoogle Scholar
Hojou, K., Furuno, S., Kushita, K.N., Otsu, H., Furuya, Y., and Izui, K., Nucl. Instr. Meth. Phys. Res. B 116, 382 (1996).CrossRefGoogle Scholar
Williams, D.B. and Carter, C.B., Transmission Electron Microscopy (Plenum Press, New York, 1996).CrossRefGoogle Scholar
Gao, F., private communication.Google Scholar
Snead, L.L. and Hay, J.C., J. Nucl. Mater. 273, 213 (1999).CrossRefGoogle Scholar
Weber, W.J., Yu, N., and Wang, L.M., J. Nucl. Mater. 253, 53 (1998).CrossRefGoogle Scholar
Heera, V., Prokert, P., Schell, N., Seifarth, H., Fukarek, W., Voelskow, M., and Skorupa, W., Appl. Phys. Lett. 70, 3531 (1997).CrossRefGoogle Scholar
Finocchi, F., Gallli, G., Parrinello, M., and Bertoni, C.M., Phys. Rev. Lett. 68, 3044 (1992).CrossRefGoogle Scholar