Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-19T04:39:25.990Z Has data issue: false hasContentIssue false

Microstructural control of amorphous silicon films crystallized using an excimer laser

Published online by Cambridge University Press:  31 January 2011

John Viatella
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611
Rajiv K. Singh
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611
Get access

Abstract

A technique for microstructural control of excimer laser-annealed silicon thin films on SiO2 substrates has been developed. By using single-crystal photolithographically etched silicon seed wafers in intimate contact with the silicon films, we have shown that it is possible to spatially control nucleation. Transmission electron micrographs show the resultant microstructure to consist of large (∼1 µm) grain structures in the area surrounding the seed contact, with distinct organization not previously observed. A theoretical discussion is presented to explain the observed phenomena. Also, results from a numerical simulation are given which outline the effects of the seed wafer on the resultant microstructure of the laser-annealed film, as compared to nonseeded areas.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bachrach, R. Z., Winer, K., Boyce, J. B., Ready, S. E., Johnson, R. I., and Anderson, G. B., J. Elec. Mats. 19, 241 (1990).CrossRefGoogle Scholar
2.Serikawa, T., Shirai, S., Okamoto, A., and Suyama, S., IEEE Trans. on Elec. Devs. 36, 1929 (1989).CrossRefGoogle Scholar
3.Sagara, K. and Murakami, E., Appl. Phys. Lett. 54, 2003 (1989).CrossRefGoogle Scholar
4.Kakkad, R., Smith, J., Lau, W. S., and Fonash, S. J., J. Appl. Phys. 65, 2069 (1989).CrossRefGoogle Scholar
5.Im, J. S., Kim, H. J., and Thompson, M. O., Appl. Phys. Lett. 63, 1969 (1993).CrossRefGoogle Scholar
6.Sameshima, T., Jpn. J. Appl. Phys. 32, L1485 (1993).CrossRefGoogle Scholar
7.Im, J. S. and Kim, H. J.. Appl. Phys. Lett. 64, 2302 (1994).CrossRefGoogle Scholar
8.Stiffler, S. R. and Thompson, M. O., Phys. Rev. B 43, 9851 (1991).CrossRefGoogle Scholar
9.Ghandi, S. K., VLSI Fabrication Principles (John Wiley and Sons, New York, 1982), p. 487.Google Scholar
10.Chabal, Y. J., Higashi, G. S., Raghavachan, K., and Burrows, V. A., J. Vac. Sci. Technol. A 7, 2104 (1989).CrossRefGoogle Scholar
11.Singh, R. K., Gilbert, D. R., and Viatella, J., Mater. Sci. Eng. B40, 89 (1996).CrossRefGoogle Scholar
12.Singh, R. K. and Viatella, J., J. Metals 44, 20 (1992).Google Scholar
13.Unamuno, S. D. and Fogarassy, E., Appl. Surf. Sci. 36, 1 (1989).CrossRefGoogle Scholar
14.Stiffler, S. R., Thompson, M. O., and Peercy, P. S., in Fundamentals of Beam-Solid Interactions and Transient Thermal Processing, edited by Aziz, M. J., Rehn, L. E., and Stritzker, B. (Mater. Res. Soc. Symp. Proc. 100, Pittsburgh, PA, 1988), p. 505.Google Scholar
15.Viatella, J., Singh, R. K., Thakur, R., and Sandhu, G., in Rapid Thermal and Integrated Processing III, edited by Wortman, J. J., Gelpey, J. C., Green, M. L., Brueck, S. R. J., and Roozeboom, F. (Mater. Res. Soc. Symp. Proc. 342, Pittsburgh, PA, 1994), p. 297.Google Scholar