Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-21T01:45:59.465Z Has data issue: false hasContentIssue false

Microstructural characterization of quenched melt-textured YBa2Cu3O7−δ materials

Published online by Cambridge University Press:  31 January 2011

J. A. Alarco
Affiliation:
Department of Physics, Chalmers University of Technology/University of Göteborg, S-412 96 Göteborg, Sweden
E. Olsson
Affiliation:
Department of Physics, Chalmers University of Technology/University of Göteborg, S-412 96 Göteborg, Sweden
S. J. Golden
Affiliation:
Centre for Microscopy and Microanalysis, The University of Queensland, Queensland 4072, Australia
A. Bhargava
Affiliation:
Centre for Microscopy and Microanalysis, The University of Queensland, Queensland 4072, Australia
T. Yamashita
Affiliation:
Centre for Microscopy and Microanalysis, The University of Queensland, Queensland 4072, Australia
J. Barry
Affiliation:
Centre for Microscopy and Microanalysis, The University of Queensland, Queensland 4072, Australia
I. D. R. Mackinnon
Affiliation:
Centre for Microscopy and Microanalysis, The University of Queensland, Queensland 4072, Australia
Get access

Abstract

The microstructure of YBa2Cu3O7−δ (YBCO) materials, melt-textured in air and quenched from the temperature range 900–;990 °C, has been characterized using a combination of x-ray diffractometry, optical microscopy, scanning electron microscopy, transmission electron microscopy, and energy dispersive x-ray spectrometry. BaCu2O2 and BaCuO2 were found to coexist in samples quenched from the temperature range 920–960 °C. The formation of BaCu2O2 preceded the formation of YBCO. Once the YBCO had formed, BaCu2O2 was present at the solidification front filling the space between nearly parallel platelets of YBCO. Large Y2BaCuO2 particles at the solidification front appeared divided into smaller ones as a result of their dissolution in the liquid that quenched as BaCu2O2.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Salama, K. and Lee, D. F., Supercond. Sci. Technol. 7, 177 (1994).CrossRefGoogle Scholar
2.Lee, D. F., Partsinevelos, C. S., Presswood, R. P. Jr, and Salama, K., J. Appl. Phys. 76, 603 (1994).CrossRefGoogle Scholar
3.Kimura, K., Morita, M., Tanaka, M., Takebayashi, S., Trouilleux, L., Miyamoto, K., Hashimoto, M., Watanabe, K., Awaji, S., and Kobayashi, N., Cryogenics 33, 506 (1993).CrossRefGoogle Scholar
4.McGinn, P., in High-Temperature Superconducting Materials Science and Engineering–New Concepts and Technology, edited by Shi, D. (Pergamon, New York, 1995), pp. 345381.CrossRefGoogle Scholar
5.Murakami, M., Yoo, S-I., Higuchi, T., Sakai, N., Weltz, J., Koshizuka, N., and Tanaka, S., Jpn. J. Appl. Phys. 33, L715 (1994).CrossRefGoogle Scholar
6.Yoo, S. I., Sakai, N., Takaichi, H., Huguchi, T., and Murakami, M., Appl. Phys. Lett. 65, 633 (1994).CrossRefGoogle Scholar
7.Morita, M., Takebayashi, S., Tanaka, M., Kimura, K., Miyamoto, K., and Sawano, K., Quench and Melt Growth (QMG) Process for Large Bulk Superconductor Fabrication, in 3rd Int. Symp. on Superconductivity (ISS'90), Sendai, 1990 (Springer-Verlag, Tokyo), Vol. III, pp. 733736.Google Scholar
8.Aselage, T. and Keefer, K., J. Mater. Res. 3, 1288 (1988).CrossRefGoogle Scholar
9.Cima, M. J., Flemings, M. C., Figueredo, A. M., Nakade, M., Ishii, H., Brody, H. D., and Haggerty, J. S., J. Appl. Phys. 72, 179 (1992).CrossRefGoogle Scholar
10.Izumi, T., Nakamura, Y., and Shiohara, Y., J. Mater. Res. 7, 16211628 (1992).CrossRefGoogle Scholar
11. B. J. Chen. Rodriguez, M. A., Misture, S. T., and Snyder, R. L., Physica C 217, 367 (1993).Google Scholar
12.Fredriksson, H. and Nylén, T., Metal Sci. 16, 283294 (1982).CrossRefGoogle Scholar
13.Rodriguez, M. A., Chen, B-J., and Snyder, R. L., Physica C 195, 185 (1992).CrossRefGoogle Scholar
14.Golden, S. J., Yamashita, T., Bhargava, A., Barry, J. C., and Mackinnon, I. D. R., Physica C 221, 85 (1994).CrossRefGoogle Scholar
15.Chen, B. J., Rodriguez, M. A., Misture, S. T., and Snyder, R. L., Physica C 198, 118 (1992).Google Scholar
16.Golden, S. J., Yamashita, T., Bhargava, A., Barry, J. C., Mackinnon, I. D. R., and Page, D., Physica C 217, 313 (1993).CrossRefGoogle Scholar
17.Kim, C-J., Kim, K-B., Won, D-Y., and Hong, G-W., Physica C 228, 351 (1994).CrossRefGoogle Scholar
18.Schmitz, G. J., Laakmann, J., Wolters, C., Rex, S., Gawalek, W., Habisreuther, T., Bruchlos, G., and Görnert, P., J. Mater. Res. 8, 2774 (1993).CrossRefGoogle Scholar
19.Thompson, J. G., Gerald, J. D. F., Withers, R. L., Barlow, P. J., and Anderson, J. S., Mater. Res. Bull. 24, 505 (1989).CrossRefGoogle Scholar
20.Griffith, M. L., Huffman, R. T., and Halloran, J. W., J. Mater. Res. 9, 1633 (1994).CrossRefGoogle Scholar
21.Wong-Ng, W. and Cook, L. P., J. Am. Ceram. Soc. 77, 1883 (1994).CrossRefGoogle Scholar
22.Ullman, J. E., McCallum, R. W., and Verhoeven, J. D., J. Mater. Res. 4, 752 (1989).CrossRefGoogle Scholar
23.Lindemer, T. B., Washburn, F. A., and MacDougall, C. S., Physica C 196, 390 (1992).Google Scholar
24.Izumi, T., Nakamura, Y., Sung, T-H., and Shiohara, Y., J. Mater. Res. 7, 801 (1993).CrossRefGoogle Scholar
25.Morita, M., Tanaka, M., Kimura, K., Sasaki, T., Trouilleux, L., Takebayashi, S., Miyamoto, K., Hashimoto, M., and Sawano, K., Process and Properties of QMG Crystals, in 4th Int. Symp. on Superconductivity (ISS'91), Tokyo, 1991 (Springer-Verlag, Tokyo), Vol. IV, pp. 433438.Google Scholar
26.Weber, J. K. R., Nordine, P. C., Goretta, K. C., and Poeppel, R. B., J. Mater. Res. 9, 1657 (1994).CrossRefGoogle Scholar