Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-17T04:38:26.311Z Has data issue: false hasContentIssue false

Microprobe Raman spectroscopy of TiN coatings oxidized by solar beam heat treatment

Published online by Cambridge University Press:  03 March 2011

M. Franck
Affiliation:
Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium
J-P. Celis
Affiliation:
Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium
J.R. Roos
Affiliation:
Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium
Get access

Abstract

Physical vapor deposited TiN coatings oxidized by solar beam heat treatment in air were examined by microprobe Raman spectroscopy. The Raman spectra of TiN treated at 400 °C indicated incipient oxidation by the presence of anatase TiO2 and additionally showed a broadband feature around the forbidden TiN vibrational mode. Inhomogeneous mixtures of rutile TiO2 and small amounts of anatase polymorph (< 10%) were detected for the treatments at 600 °C only during the initial stage of oxidation. Prolonged treatment at 600 °C resulted in a complete anatase-to-rutile conversion. Rutile was identified as the single product of oxidation of the TiN samples treated at 800 °C. Peak analysis of the rutile spectra revealed no substantial spectral shifts, demonstrating an oxide growth of nearly stoichiometric rutile with an estimated composition in the range of TiO2±0.02. The Raman scattered light intensity could be correlated with the rutile layer thickness.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Stanley, J. T., Fields, C. L., and Pitts, J. R., Adv. Mater. Process. 12, 16 (1990).Google Scholar
2Vázquez, A.J., Rodriguez, G. P., and de Damborenea, J., Sol. Energy Mater. 24, 751 (1991).CrossRefGoogle Scholar
3Franck, M., Blanpain, B., Oberländer, B.C., Celis, J. P., and Roos, J. R., Sol. Energy Mater. Sol. Cells 31, 401 (1993).CrossRefGoogle Scholar
4Desmaison, J., Lefort, P., and Billy, M., Oxid. Met. 13, 203 (1979).CrossRefGoogle Scholar
5Wittmer, M., Noser, J., and Melchior, H., J. Appl. Phys. 52, 6659 (1981).CrossRefGoogle Scholar
6Suni, I., Sigurd, D., Ho, K. T., and Nicolet, M-A., J. Electrochem. Soc. 130, 1210 (1983).CrossRefGoogle Scholar
7Taniguchi, S., Shibata, T., and Okada, A., Mater. Trans. JIM 30, 765 (1989).CrossRefGoogle Scholar
8Desmaison, J., Lefort, P., and Billy, M., Oxid. Met. 13, 505 (1979).CrossRefGoogle Scholar
9Melendres, C. A., Narayanasamy, A., Maroni, V. A., and Siegel, R. W., J. Mater. Res. 4, 1246 (1989).CrossRefGoogle Scholar
10Parker, J. C. and Siegel, R. W., J. Mater. Res. 5, 1246 (1990).CrossRefGoogle Scholar
11Parker, J. C. and Siegel, R. W., Appl. Phys. Lett. 57, 943 (1990).CrossRefGoogle Scholar
12Jandel Scientific PeakFit, version 3.10 (1992).Google Scholar
13Porto, S. P. S., Fleury, P. A., and Damen, T. C., Phys. Rev. 154, 522 (1967).CrossRefGoogle Scholar
14Ohsaka, T., Yamaoka, S., and Shimomura, O., Solid State Commun. 30, 345 (1979).CrossRefGoogle Scholar
15Pawlewicz, W. T., Exarhos, G. J., and Conaway, W. E., Appl. Optics 22, 1837 (1983).CrossRefGoogle Scholar
16Merle, P., Pascual, J., Camassel, J., and Mathieu, H., Phys. Rev. B 21, 1617 (1980).CrossRefGoogle Scholar
17Maroni, V. A., J. Phys. Chem. Solids 49, 307 (1988).CrossRefGoogle Scholar
18Nemanich, R. J., Tsai, C. C., and Connell, G. A. N., Phys. Rev. Lett. 44, 273 (1980).CrossRefGoogle Scholar
19Merlin, R. and Perry, T. A., Appl. Phys. Lett. 45, 852 (1984).CrossRefGoogle Scholar
20Rieder, K. H. and Drexel, W., Phys. Rev. Lett. 34, 148 (1975).CrossRefGoogle Scholar
21Spengler, W., Kaiser, R., and Bilz, H., Solid State Commun. 17, 19 (1975).CrossRefGoogle Scholar
22Ernsberger, C., Nickerson, J., Smith, T., Miller, A. E., and Banks, D., J. Vac. Sci. Technol. A 4, 2784 (1986).CrossRefGoogle Scholar
23Wu, H. Z., Chou, T. C., Mishra, A., Anderson, D. R., Lampert, J. K., and Gujrathi, S. C., Thin Solid Films 191, 55 (1990).CrossRefGoogle Scholar
24Tompkins, H. G., J. Appl. Phys. 71, 980 (1992).CrossRefGoogle Scholar
25Capwell, R. J., Spagnolo, F., and DeSessa, M. A., Appl. Spectrosc. 26, 537 (1972).CrossRefGoogle Scholar
26Gardos, M. N., STLE Tribol. Trans. 31, 427 (1988).CrossRefGoogle Scholar
27Gardos, M. N., Hong, H-S., and Winer, W. O., STLE Tribol. Trans. 22, 209 (1990).CrossRefGoogle Scholar
28Bennett, J. M., Pelletier, E., Albrand, G., Borgogno, J. P., Lazarides, B., Carniglia, C. K., Schmell, R. A., Allen, T. H., Tuttle Hart, T., Guenther, K. H., and Saxer, A., Appl. Opt. 28, 3303 (1989).CrossRefGoogle Scholar
29White, P. L., Exarhos, G. J., Bowden, M., Dixon, N. M., and Gardiner, D. J., J. Mater. Res. 6, 126 (1991).CrossRefGoogle Scholar