Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-28T07:59:18.143Z Has data issue: false hasContentIssue false

Metastable δ-Bi12SiO20 and its effect on the quality of grown single crystals of γ-Bi12SiO20

Published online by Cambridge University Press:  31 January 2011

Senlin Fu
Affiliation:
Interdisciplinary Graduate School of Engineering Science, Kyushu University, Kasuga Koen 6–1, Kasuga, 816 Fukuoka, Japan
Hiroyuki Ozoe
Affiliation:
Institute of Advanced Material Study, Kyushu University, Kasuga Koen 6–1, Kasuga, 816 Fukuoka, Japan
Get access

Abstract

Metastable δ-Bi12SiO20 may crystallize from the overheated Bi12SiO20 melt and transform into stable γ-Bi12SiO20 at about 569.5 °C during the subsequent slow cooling process. The transition δ-Bi12SiO20 → γ-Bi12SiO20 is irreversible and the γ-Bi12SiO20 is stable up to the melting temperature. By quenching the Bi12SiO20 melt, pure δ-Bi12SiO20 can be obtained at room temperature. The quenched δ-Bi12SiO20 crystal is nontransparent and has a space group of Fm3m (225) and a lattice constant of 55.417 Å at 20 °C. The quenched metastable δ-Bi12SiO20 can transform into pure γ-Bi12SiO20 at 382.5–386.1 °C with an exothermic heat of 31.68–32.38 J/g. The transition-produced δ-Bi12SiO20 crystal is still nontransparent and has a large lattice distortion. The transition δ-Bi12SiO20 → γ-Bi12SiO20 causes about 6% volume contraction, which may result in cracking of the grown crystal. By controlling the growth parameters, this transition can be effectively avoided.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wang, Y., Nature 356, 585 (1992).CrossRefGoogle Scholar
2. Khoury, J., Cronin-Golomb, M., and Woods, C., J. Appl. Phys. 77, 7 (1995).CrossRefGoogle Scholar
3. Attard, A. E., J. Appl. Phys. 66, 3211 (1989); 69, 44 (1991); 71, 933 (1992).Google Scholar
4. Gunter, P. and Huignard, J. P., Topics in Applied Physics (Spring, Berlin, 1989), p. 62.Google Scholar
5. Kawasaki, T., Terashima, T., Suzuki, S., and Takada, T., J. Appl. Phys. 76, 3724 (1994).Google Scholar
6. Petre, D., Pintilie, I., Botila, T., and Ciurea, M. L., J. Appl. Phys. 76, 2216 (1994).Google Scholar
7. Leigh, W. B., Larkin, J. J., Harris, M. T., and Brown, R. N., J. Appl. Phys. 76, 660 (1994).CrossRefGoogle Scholar
8. Johanse, P. M. B., IEEE J. Quantum Electron, 30, 1916 (1994).CrossRefGoogle Scholar
9. Sochava, S.L., Buse, K., and Krätzig, E., Phys. Rev. B 51, 4684 (1995).CrossRefGoogle Scholar
10. Ellin, H. C., Takacs, J., and Solymar, I., Appl. Opt. 33, 4125 (1994).CrossRefGoogle Scholar
11. Takamori, T. and Boland, J. J., J. Mater. Sci. Lett. 10, 972 (1991).CrossRefGoogle Scholar
12. Harris, M. T. and Larkin, J. J., Appl. Phys. Lett. 60, 2162 (1992).Google Scholar
13. Lin, C. and Motakef, S., J. Cryst. Growth 128, 834 (1993).Google Scholar
14. Todd, D. E. and Carter, C. L., Proc. American Power Conference 1088 (Illinois Inst. Technol., Chicago, IL, 1987), p. 440.Google Scholar
15. Yoshino, T., Ohno, Y., and Kurosawa, K., Proc. SPIE Int. Soc. Opt. Eng. 514, 55 (1984).Google Scholar
16. Saifi, M., Dubois, B., Vogel, E.M., and Thiel, F.A., J. Mater. Res. 1, 669 (1986).Google Scholar
17. Fu, S., Jiang, J., Chen, J., and Ding, Z., J. Mater. Sci. 28, 1659 (1993).CrossRefGoogle Scholar
18. Fu, S. and Ozoe, H., J. Appl. Phys. 77, 5968 (1995).Google Scholar
19. Gattow, G. and Schröder, H., Zeit. Anorg. Allgem. Chem. 318, 176 (1962).CrossRefGoogle Scholar
20. Levin, E.M. and Roth, R. S., J. Res. N.B.S.-A. (Phys. and Chem.) 68A, 197 (1964).Google Scholar
21. Nat. Bur. Stand. (U.S.), Powder Diffraction File, No. 37–485 (⋆) (1987).Google Scholar
22. Nomura, K. and Ogawa, H., J. Appl. Phys. 70, 3234 (1991).CrossRefGoogle Scholar
23. Troemel, M., Delicat, U., Ducke, J., and Muench, E., Powder Diffraction File, No. 42185 (⋆) (1992), ICDD Grant-in-Aid (1991).Google Scholar
24. Levin, E.M. and Roth, R. S., J. Res. NBS.-A. (Phys. and Chem.) 68A, 189 (1964).CrossRefGoogle Scholar
25. Chen, C. J. and Wu, J. M., J. Mater. Res. 5, 1530 (1990).CrossRefGoogle Scholar
26. Hingorani, S., Shah, D.O., and Multani, M.S., J. Mater. Res. 10, 461 (1995).CrossRefGoogle Scholar
27. Wilson, A.J.C., International Tables for Crystallography, Vol. C (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1992).Google Scholar
28. Fu, S. and Ozoe, H., “Solid-phase reaction in synthesis of Bi12SiO20 source rod for single-crystal growth in a floating zone”, J. Phys. Chem. Solids 56, in press.Google Scholar
29. Kipson, H. and Steeple, H., Interpretation of X-ray Powder Diffraction Patterns (Macmillan and Co. Ltd., London WC2, 1970).Google Scholar
30. Bish, D. L. and Post, J. E., Reviews in Mineralogy, Vol. 20, Modern Powder Diffraction (series editor: Ribbe, Paul H.) (The Mineralog-ical Society of American, Washington, DC 20006, 1989).CrossRefGoogle Scholar
31. Correia, N.J. et al, Powder Diffraction File, No. 29–235 (1979).Google Scholar
32. See, for example, the Periodic Table of the Elements.Google Scholar