Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-27T00:00:50.892Z Has data issue: false hasContentIssue false

Metal oxide nanowire chemical and biochemical sensors

Published online by Cambridge University Press:  06 November 2013

Elisabetta Comini*
Affiliation:
SENSOR, Department of Information Engineering, University of Brescia and CNR-INO, 25133 Brescia, Italy
Camilla Baratto
Affiliation:
SENSOR, Department of Information Engineering, University of Brescia and CNR-INO, 25133 Brescia, Italy
Guido Faglia
Affiliation:
SENSOR, Department of Information Engineering, University of Brescia and CNR-INO, 25133 Brescia, Italy
Matteo Ferroni
Affiliation:
SENSOR, Department of Information Engineering, University of Brescia and CNR-INO, 25133 Brescia, Italy
Andrea Ponzoni
Affiliation:
SENSOR, Department of Information Engineering, University of Brescia and CNR-INO, 25133 Brescia, Italy
Dario Zappa
Affiliation:
SENSOR, Department of Information Engineering, University of Brescia and CNR-INO, 25133 Brescia, Italy
Giorgio Sberveglieri
Affiliation:
SENSOR, Department of Information Engineering, University of Brescia and CNR-INO, 25133 Brescia, Italy
*
a)Address all correspondence to this author. e-mail: comini@ing.unibs.it
Get access

Abstract

The fabrication methods and the basic properties of the metal-oxide nanostructures referred as nanowires are presented and reviewed in this paper, with particular emphasis to the electrical and optical properties and their useful implementation for chemical and biochemical sensing. The field of chemical sensors has benefited by the wealth of highly crystalline nanostructures produced by physical and chemical methods. Large variation in bulk electrical conductivity, structural stability upon high temperature operation, high degree of crystalline ordering, large impact of point defects and surface states have unveiled the potential for the sensing field and have opened up new perspectives of application and for the realization of novel device architectures. This paper will summarize various techniques for preparation and characterization; then, the growth mechanisms and working principles will be discussed. Finally, the challenges that this field is currently facing are presented to signify the perspectives of expansion.

Type
Invited Feature Papers
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fierro, J.L.G.: Metal Oxides: Chemistry and Applications (CRC Press, Florida, 2006).Google Scholar
Henrich, V.E. and Cox, P.A.: The Surface Chemistry of Metal Oxides (Cambridge University Press, Cambridge, UK, 1994).Google Scholar
Noguera, C.: Physics and Chemistry at Oxide Surfaces (Cambridge University Press, Cambridge, UK, 1996).CrossRefGoogle Scholar
José, A.R. and Marcos, F-G.: Synthesis, Properties, and Applications of Oxide Nanomaterials (Wiley, New Jersey, 2007).Google Scholar
Metal-oxide Semiconductor Integrated Circuits (Microelectronics series) (Van Nost. Reinhold, New York, 1972).Google Scholar
Jeong, S.J., Song, J.S., Min, B.K., Lee, W.J., and Park, E.C.: Characteristics of piezoelectric multilayer devices containing metal-oxide multicomponent electrode. Ferroelectrics 338, 916 (2006).CrossRefGoogle Scholar
Reddy, A.L.M., Gowda, S.R., Shaijumon, M.M., and Ajayan, P.M.: Hybrid nanostructures for energy storage applications. Adv. Mater. 24(37), 5045 (2012).CrossRefGoogle Scholar
Kolmakov, A. and Moskovits, M.: Chemical sensing and catalysis by one-dimensional nanostructres. Ann. Rev. Mater. Res. 34, 151180 (2004).CrossRefGoogle Scholar
Comini, E., Baratto, C., Faglia, G., Ferroni, M., Vomiero, A., and Sberveglieri, G.: Quasi-one dimensional metal oxide semiconductors: Preparation, characterization and application as chemical sensors. Prog. Mater. Sci. 54, 167 (2009).CrossRefGoogle Scholar
Korotcenkov, G.: Chemical Sensors, Vol. 16 (Momentum Press, New York, 2010).Google Scholar
Janata, J. and Janata, J.: Principles of Chemical Sensors (Springer-Verlag, Heidelberg, Germany, 2010).Google Scholar
Wang, Z.L.: Characterizing the structure and properties of individual wire-like nanoentities. Adv. Mater. 12, 12951298 (2000).3.0.CO;2-B>CrossRefGoogle Scholar
Patzke, G.R., Krumeich, F., and Nesper, R.: Oxidic nanotubes and nanorods - anisotropic modules for a future nanotechnology. Angew. Chem. Int. Ed. 41, 24462461 (2002).3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Carpenter, M.A., Mathur, S., and Kolmakov, A.: Metal Oxide Nanomaterials for Chemical Sensors (Springer, New York, 2012).Google Scholar
Kolmakov, A.: The effect of morphology and surface doping on sensitization of quasi-1D metal oxide nanowire gas sensors. In Proceedings of SPIE, Vol. 6370, 2006; pp. 63700X163700X8.Google Scholar
Law, M., Hannes, K., Messer, B., Kim, F., and Yang, P.: Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature. Angew. Chem. Int. Ed. 41, 24052408 (2002).3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Marcu, A., Trupina, L., Zamani, R., Arbiol, J., Grigoriu, C., and Morante, J.R.: Catalyst size limitation in vapor-liquid-solid ZnO nanowire growth using pulsed laser deposition. Thin Solid Films 520(14), 4626 (2012).CrossRefGoogle Scholar
Gupta, A., Kim, B.C., Edwards, E., Brantley, C., and Ruffin, P.: Covalent functionalization of zinc oxide nanowires for high sensitivity p-nitrophenol detection in biological systems. Mater. Sci. Eng., B 177(18), 1583 (2012).CrossRefGoogle Scholar
Wu, Y., Wu, W., Zou, X.M., Xu, L., and Li, J.C.: Double 3-fold-symmetry novel ZnO hierarchical nanostructure arrays: Synthesis, characterization, and photoluminescence properties. Mater. Lett. 86, 182 (2012).CrossRefGoogle Scholar
Yao, M.H., Hu, P., Cao, Y.B., Xiang, W.C., Zhang, X., Yuan, F.L., and Chen, Y.F.: Morphology-controlled ZnO spherical nanobelt-flower arrays and their sensing properties. Sens. Actuators, B 177, 562 (2013).CrossRefGoogle Scholar
Kiasari, N.M., Soltanian, S., Gholamkhass, B., and Servati, P.: Room temperature ultra-sensitive resistive humidity sensor based on single zinc oxide nanowire. Sens. Actuators, A 182, 101 (2012).CrossRefGoogle Scholar
Na, C.W., Woo, H.S., Kim, I.D., and Lee, J.H.: Selective detection of NO2 and C2H5OH using a Co3O4-decorated ZnO nanowire network sensor. Chem. Commun. 47(18), 5148 (2011).CrossRefGoogle ScholarPubMed
Kim, S.S., Choi, S.W., Na, H.G., Kwak, D.S., Kwon, Y.J., and Kim, H.W.: ZnO-SnO2 branch-stem nanowires based on a two-step process: Synthesis and sensing capability. Curr. Appl. Phys. 13(3), 526 (2013).CrossRefGoogle Scholar
Waclawik, E.R., Chang, J., Ponzoni, A., Concina, I., Zappa, D., Comini, E., Motta, N., Faglia, G., and Sberveglieri, G.: Functionalised zinc oxide nanowire gas sensors: Enhanced NO2 gas sensor response by chemical modification of nanowire surfaces. Beilstein J. Nanotechnol. 3, 368 (2012).CrossRefGoogle ScholarPubMed
Lupan, O., Emelchenko, G.A., Ursaki, V.V., Chai, G., Redkin, A.N., Gruzintsev, A.N., Tiginyanu, I.M., Chow, L., Ono, L.K., Cuenya, B.R., Heinrich, H., and Yakimov, E.E.: Synthesis and characterization of ZnO nanowires for nanosensor applications. Mater. Res. Bull. 45(8), 1026 (2010).CrossRefGoogle Scholar
Calestani, D., Zha, M.Z., Zanotti, L., Villani, M., and Zappettini, A.: Low temperature thermal evaporation growth of aligned ZnO nanorods on ZnO film: A growth mechanism promoted by Zn nanoclusters on polar surfaces. Cryst. Eng. Commun. 13(5), 1707 (2011).CrossRefGoogle Scholar
Woo, H.S., Na, C., Kim, I.D., and Lee, J.H.: Highly sensitive and selective trimethylamine sensor using one-dimensional ZnO-Cr2O3 hetero-nanostructures. Nanotechnology 23(24), 245501 (2012).CrossRefGoogle ScholarPubMed
Hu, P., Han, N., Zhang, D.W., Ho, J.C., and Chen, Y.F.: Highly formaldehyde-sensitive, transition-metal doped ZnO nanorods prepared by plasma-enhanced chemical vapor deposition. Sens. Actuators, B 169, 74 (2012).CrossRefGoogle Scholar
Campos, L.C., Guimaraes, M.H.D., Goncalves, A.M.B., de Oliveira, S., and Lacerda, R.G.: ZnO UV photodetector with controllable quality factor and photosensitivity. AIP Adv. 3(2), 022104 (2013).CrossRefGoogle Scholar
Tonezzer, M. and Lacerda, R.G.: Integrated zinc oxide nanowires/carbon microfiber gas sensors. Sens. Actuators, B 150(2), 517 (2010).CrossRefGoogle Scholar
Le Hung, N., Ahn, E., Park, S., Jung, H., Kim, H., Hong, S.K., Kim, D., and Hwang, C.: Synthesis and hydrogen gas sensing properties of ZnO wirelike thin films. J. Vac. Sci. Technol., A 27(6), 1347 (2009).CrossRefGoogle Scholar
Tonezzer, M. and Lacerda, R.G.: Zinc oxide nanowires on carbon microfiber as flexible gas sensor. Physica E 44(6), 1098 (2012).CrossRefGoogle Scholar
Baranowska-Korczyc, A., Fronc, K., Klopotowski, L., Reszka, A., Sobczak, K., Paszkowicz, W., Dybko, K., Dluzewski, P., Kowalski, B.J., and Elbaum, D.: Light- and environment-sensitive electrospun ZnO nanofibers. RSC Adv. 3(16), 5656 (2013).CrossRefGoogle Scholar
Li, L., Yang, F., Yu, J., Wang, X.W., Zhang, L.N., Chen, Y., and Yang, H.Q.: In situ growth of ZnO nanowires on Zn comb-shaped interdigitating electrodes and their photosensitive and gas-sensing characteristics. Mater. Res. Bull. 47(12), 3971 (2012).CrossRefGoogle Scholar
Qurashi, A., Faiz, M., Tabet, N., and Alam, M.W.: Low temperature synthesis of hexagonal ZnO nanorods and their hydrogen sensing properties. Superlattice Microstruct. 50(2), 173 (2011).CrossRefGoogle Scholar
Lim, M.A., Lee, Y.W., Han, S.W., and Park, I.: Novel fabrication method of diverse one-dimensional Pt/ZnO hybrid nanostructures and its sensor application. Nanotechnology 22(3), 035601 (2011).CrossRefGoogle ScholarPubMed
Guha, P.K., Santra, S., Covington, J.A., Udrea, F., and Gardner, J.W.: Zinc oxide nanowire based hydrogen sensor on SOI CMOS platform. Proc. Eng. 25, 14731476 (2011).CrossRefGoogle Scholar
Lim, Z.H., Chia, Z.X., Kevin, M., Wong, A.S.W., and Ho, G.W.: A facile approach towards ZnO nanorods conductive textile for room temperature multifunctional sensors. Sens. Actuators, B 151(1), 121 (2010).CrossRefGoogle Scholar
Wang, W.D., Zhang, Z., Liao, Q.L., Yu, T., Shen, Y.W., Li, P.F., Huang, Y.H., and Zhang, Y.: Two-step epitaxial synthesis and layered growth mechanism of bisectional ZnO nanowire arrays. J. Cryst. Growth 363, 247 (2013).CrossRefGoogle Scholar
Sun, G.J., Choi, S.W., Jung, S.H., Katoch, A., and Kim, S.S.: V-groove SnO2 nanowire sensors: Fabrication and Pt-nanoparticle decoration. Nanotechnology 24(2), 025504 (2013).CrossRefGoogle ScholarPubMed
Lin, Y.H., Hsueh, Y.C., Lee, P.S., Wang, C.C., Wu, J.M., Perng, T.P., and Shih, H.C.: Fabrication of tin dioxide nanowires with ultrahigh gas sensitivity by atomic layer deposition of platinum. J. Mater. Chem. 21(28), 10552 (2011).CrossRefGoogle Scholar
Tonezzer, M. and Hieu, N.V.: Size-dependent response of single-nanowire gas sensors. Sens. Actuators, B 163(1), 146 (2012).CrossRefGoogle Scholar
Shao, F., Hoffmann, M.W.G., Prades, J.D., Morante, J.R., Lopez, N., and Hernandez-Ramirez, F.: Interaction mechanisms of ammonia and tin oxide: A combined analysis using single nanowire devices and DFT calculations. J. Phys. Chem. C 117, 35203526 (2013).CrossRefGoogle Scholar
Sysoev, V.V., Strelcov, E., Kar, S., and Kolmakov, A.: The electrical characterization of a multi-electrode odor detection sensor array based on the single SnO2 nanowire. Thin Solid Films 520(3), 898 (2011).CrossRefGoogle Scholar
Choi, S.W., Jung, S.H., and Kim, S.S.: Significant enhancement of the NO2 sensing capability in networked SnO2 nanowires by Au nanoparticles synthesized via gamma-ray radiolysis. J. Hazard. Mater. 193, 243 (2011).CrossRefGoogle ScholarPubMed
Shaalan, N.M., Yamazaki, T., and Kikuta, T.: Synthesis of metal and metal oxide nanostructures and their application for gas sensing. Mater. Chem. Phys. 127(1–2), 143 (2011).CrossRefGoogle Scholar
Ramirez-Hernandez, F., Prades, J.D., Hackner, A., Fischer, T., Muller, G., Mathur, S., and Morante, J.R.: Miniaturized ionization gas sensors from single metal oxide nanowires. Nanoscale 3, 630634 (2011).CrossRefGoogle Scholar
Dattoli, E.N., Davydov, A.V., and Benkstein, K.D.: Tin oxide nanowire sensor with integrated temperature and gate control for multi-gas recognition. Nanoscale 4(5), 1760 (2012).CrossRefGoogle ScholarPubMed
Li, X.P., Gu, Z.Y., Cho, J.H., Sun, H.W., and Kurup, P.: Tin-copper mixed metal oxide nanowires: Synthesis and sensor response to chemical vapors. Sens. Actuators, B 158(1), 199 (2011).CrossRefGoogle Scholar
Liu, L., Guo, C.C., Li, S.C., Wang, L.Y., Dong, Q.Y., and Li, W.: Improved H2 sensing properties of Co-doped SnO2 nanofibers. Sens. Actuators, B 150(2), 806 (2010).CrossRefGoogle Scholar
Zhang, H.N., Li, Z.Y., Liu, L., Xu, X.R., Wang, Z.J., Wang, W., Zheng, W., Dong, B., and Wang, C.: Enhancement of hydrogen monitoring properties based on Pd-SnO2 composite nanofibers. Sens. Actuators, B 147(1), 111 (2010).CrossRefGoogle Scholar
Xu, X.R., Sun, J.H., Zhang, H.N., Wang, Z.J., Dong, B., Jiang, T.T., Wang, W., Li, Z.Y., and Wang, C.: Effects of Al doping on SnO2 nanofibers in hydrogen sensor. Sens. Actuators, B 160(1), 858 (2011).CrossRefGoogle Scholar
Wang, Z.J., Li, Z.Y., Sun, J.H., Zhang, H.N., Wang, W., Zheng, W., and Wang, C.: Improved hydrogen monitoring properties based on p-NiO/n-SnO2 heterojunction composite nanofibers. J. Phys. Chem. C 114(13), 6100 (2010).CrossRefGoogle Scholar
Zhao, X.B., Pang, Z.W., Wu, M.Z., Liu, X.S., Zhang, H., Ma, Y.Q., Sun, Z.Q., Zhang, L.D., and Chen, X.S.: Magnetic field-assisted synthesis of wire-like Co3O4 nanostructures: Electrochemical and photocatalytic studies. Mater. Res. Bull. 48(1), 92 (2013).CrossRefGoogle Scholar
Singh, N., Ponzoni, A., Comini, E., and Lee, P.S.: Chemical sensing investigations on Zn-In2O3 nanowires. Sens. Actuators, B 171, 244 (2012).CrossRefGoogle Scholar
Singh, N., Gupta, R.K., and Lee, P.S.: Gold-nanoparticle-functionalized In2O3 nanowires as CO gas sensors with a significant enhancement in response. ACS Appl. Mater. Interfaces 3(7), 2246 (2011).CrossRefGoogle ScholarPubMed
Qurashi, A., El-Maghraby, E.M., Yamazaki, T., and Kikuta, T.: Catalyst supported growth of In2O3 nanostructures and their hydrogen gas sensing properties. Sens. Actuators, B 147(1), 48 (2010).CrossRefGoogle Scholar
Lim, T., Lee, S., Meyyappan, M., and Ju, S.: Control of semiconducting and metallic indium oxide nanowires. ACS Nano 5(5), 3917 (2011).CrossRefGoogle ScholarPubMed
Wang, Z., Hu, Y.M., Wang, W., Zhang, X., Wang, B.X., Tian, H.Y., Wang, Y., Guan, J.G., and Gu, H.S.: Fast and highly-sensitive hydrogen sensing of Nb2O5 nanowires at room temperature. Int. J. Hydrogen Energy 37(5), 4526 (2012).CrossRefGoogle Scholar
Fang, X.S., Hu, L.F., Huo, K.F., Gao, B., Zhao, L.J., Liao, M.Y., Chu, P.K., Bando, Y., and Golberg, D.: New ultraviolet photodetector based on individual Nb2O5 nanobelts. Adv. Funct. Mater. 21(20), 3907 (2011).CrossRefGoogle Scholar
Meng, D., Shaalan, N.M., Yamazaki, T., and Kikuta, T.: Preparation of tungsten oxide nanowires and their application to NO2 sensing. Sens. Actuators, B 169, 113 (2012).CrossRefGoogle Scholar
Zhu, L.F., She, J.C., Luo, J.Y., Deng, S.Z., Chen, J., Ji, X.W., and Xu, N.S.: Self-heated hydrogen gas sensors based on Pt-coated W18O49 nanowire networks with high sensitivity, good selectivity and low power consumption. Sens. Actuators, B 153(2), 354 (2011).CrossRefGoogle Scholar
Hoa, N.D. and El-Safty, S.A.: Gas nanosensor design packages based on tungsten oxide: Mesocages, hollow spheres, and nanowires. Nanotechnology 22(48), 485503 (2011).CrossRefGoogle ScholarPubMed
Qin, Y.X., Shen, W.J., Li, X., and Hu, M.: Effect of annealing on microstructure and NO2-sensing properties of tungsten oxide nanowires synthesized by solvothermal method. Sens. Actuators, B 155(2), 646 (2011).CrossRefGoogle Scholar
Mema, R., Yuan, L., Du, Q.T., Wang, Y.Q., and Zhou, G.W.: Effect of surface stresses on CuO nanowire growth in the thermal oxidation of copper. Chem. Phys. Lett. 512(1–3), 87 (2011).CrossRefGoogle Scholar
Wang, S.B., Hsiao, C.H., Chang, S.J., Lam, K.T., Wen, K.H., Young, S.J., Hung, S.C., and Huang, B.R.: CuO nanowire-based humidity sensor. IEEE Sens. J. 12(6), 18841888 (2012).CrossRefGoogle Scholar
Zappa, D., Comini, E., Zamani, R., Arbiol, J., Morante, J.R., and Sberveglieri, G.: Preparation and integration of copper oxide nanowires in sensing devices. Sens. Actuators, B 182, 715 (2012).CrossRefGoogle Scholar
Kevin, M., Ong, W.L., Lee, G.H., and Ho, G.W.: Formation of hybrid structures: Copper oxide nanocrystals templated on ultralong copper nanowires for open network sensing at room temperature. Nanotechnology 22(23), 235701 (2011).CrossRefGoogle ScholarPubMed
Shi, J., Sun, C., Starr, M.B., and Wang, X.: Growth of titanium dioxide nanorods in 3D-confined spaces. Nano Lett. 11(2), 624 (2011).CrossRefGoogle ScholarPubMed
Feng, X.H., Huang, X.P., and Wang, X.W.: Thermal conductivity and secondary porosity of single anatase TiO2 nanowire. Nanotechnology 23(18), 185701 (2012).CrossRefGoogle ScholarPubMed
Wang, D.L., Chen, A.T., and Jen, A.K.Y.: Reducing cross-sensitivity of TiO2-(B) nanowires to humidity using ultraviolet illumination for trace explosive detection. Phys. Chem. Chem. Phys. 15(14), 5017 (2013).CrossRefGoogle ScholarPubMed
Urban, K.W.: The new paradigm of transmission microscopy. MRS Bull. 32(11), 946952 (2007).CrossRefGoogle Scholar
Urban, K.: Is science prepared for atomic-resolution electron microscopy. Nat. Mater. 8, 260262 (2009).CrossRefGoogle ScholarPubMed
Thomas, J.M. and Midgley, P.A.: The modern electron microscope: A cornucopia of chemico-physical insights. Chem. Phys. 385(1–3), 110 (2011).CrossRefGoogle Scholar
Jia, C-L., Mi, S-B., Urban, K., Vrejoiu, I., Alexe, M., and Hesse, D.: Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films. Nat. Mater. 7(1), 57 (2008).CrossRefGoogle ScholarPubMed
Muller, D.A.: Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nat. Mater. 8(4), 263270 (2009).CrossRefGoogle ScholarPubMed
Midgley, P.A. and Dunin-Borkowski, R.E.: Electron tomography and holography in materials science. Nat. Mater. 8(4), 271280 (2009).CrossRefGoogle ScholarPubMed
Wolf, D.: Electron holographic tomography for mapping the three-dimensional distribution of electrostatic potential in III-V semiconductor nanowires. Appl. Phys. Lett. 98(26), 264103264103-3 (2011).CrossRefGoogle Scholar
Verheijen, M., Algra, R., and Borgström, M.: Three-dimensional morphology of GaP-GaAs nanowires revealed by transmission electron microscopy tomography. Nano Lett. 7, 30513055 (2007).CrossRefGoogle ScholarPubMed
Huang, J.Y.: In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330(6010), 15151520 (2010).CrossRefGoogle ScholarPubMed
Perea, D.E.: Three-dimensional nanoscale composition mapping of semiconductor nanowires. Nano Lett. 6(2), 181185 (2006).CrossRefGoogle ScholarPubMed
Ahsanulhaq, Q., Kim, J.H., Lee, J.S., and Hahn, Y.B.: Electrical and gas sensing properties of ZnO nanorod arrays directly grown on a four-probe electrode system. Electrochem. Commun. 12(3), 475 (2010).CrossRefGoogle Scholar
Ibupoto, Z.H., Khun, K., and Willander, M.: A selective iodide ion sensor electrode based on functionalized ZnO nanotubes. Sensors 13(2), 1984 (2013).CrossRefGoogle ScholarPubMed
Lupan, O., Chow, L., Pauporte, T., Ono, L.K., Cuenya, B.R., and Chai, G.: Highly sensitive and selective hydrogen single-nanowire nanosensor. Sens. Actuators, B 173, 772 (2012).CrossRefGoogle Scholar
Gad, A.E., Hoffmann, M.W.G., Hernandez-Ramirez, F., Prades, J.D., Shen, H., and Mathur, S.: Coaxial p-Si/n-ZnO nanowire heterostructures for energy and sensing applications. Mater. Chem. Phys. 135(2–3), 618 (2012).CrossRefGoogle Scholar
Madou, M.J. and Morrison, S.R.: Chemical Sensing with Solid State Devices (Academic Press Inc., Boston, MA, 1989).Google Scholar
Kronik, L. and Shapira, Y.: Surface photovoltage phenomena: Theory, experiment, and applications. Surf. Sci. Rep. 37(1–5), 1 (1999).CrossRefGoogle Scholar
Tsuda, N., Nasu, K., and Fujimori, A.: Electronic Conduction in Oxides, 2nd ed. (Springer, Berlin, Germany, 2000).CrossRefGoogle Scholar
Samson, S. and Fonstad, C.G.: Defect structure and electronic donor levels in stannic oxide crystal. J. Appl. Phys. 44, 4618 (1973).CrossRefGoogle Scholar
Comini, E., Faglia, G., Sberveglieri, G., Pan, Z., and Wang, Z.L.: Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl. Phys. Lett. 81, 18691871 (2002).CrossRefGoogle Scholar
Barsan, N. and Weimar, U.: Conduction model of metal oxide gas sensors. J. Electroceram. 7, 143167 (2001).CrossRefGoogle Scholar
Korotcenkov, G., Brinzari, V., Ivanov, M., Cerneavschi, A., Rodriguez, J., Cirera, A., Cornet, A., and Morante, J.: Structural stability of indium oxide films deposited by spray pyrolysis during thermal annealing. Thin Solid Films 479, 3851 (2005).CrossRefGoogle Scholar
Ippolito, S.J., Ponzoni, A., Kalantar-Zadeh, K., Wlodarski, W., Comini, E., Faglia, G., and Sberveglieri, G.: Layered WO3/ZnO/36° LiTaO3 SAW gas sensor sensitive towards ethanol vapour and humidity. Sens. Actuators, B 117, 442450 (2006).CrossRefGoogle Scholar
Carotta, M.C., Ferroni, M., Guidi, V., and Martinelli, G.: preparation and characterization of nanostructured titania thick films. Adv. Mater. 11, 943946 (1999).3.0.CO;2-L>CrossRefGoogle Scholar
Orton, J.W. and Powell, M.J.: The hall effect in polycrystalline and powdered semiconductors. Rep. Prog. Phys. 43, 12631307 (1980).CrossRefGoogle Scholar
Ponzoni, A., Comini, E., Concina, I., Ferroni, M., Falasconi, M., Gobbi, E., Sberveglieri, V., and Sberveglieri, G.: Nanostructured metal oxide gas sensors, a survey of applications carried out at sensor lab, Brescia (Italy) in the security and food quality fields. Sensors 12, 1702317045 (2012).CrossRefGoogle ScholarPubMed
Zhang, D., Liu, Z., Li, C., Tang, T., Liu, X., Han, S., Lei, B., and Zhou, C.: Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Lett. 4, 19191924 (2004).CrossRefGoogle Scholar
Ponzoni, A., Comini, E., Sberveglieri, G., Zhou, J., Deng, S.Z., Xu, N.S., Ding, Y., and Wang, Z.L.: Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks. Appl. Phys. Lett. 88, 203101 (2006).CrossRefGoogle Scholar
Choi, Y.G., Sakai, G., Shimanoe, K., and Yamazoe, N.: Wet process-based fabrication of WO3 thin film for NO2 detection. Sens. Actuators, B 101, 107111 (2004).CrossRefGoogle Scholar
Xu, C.N., Tamaki, J., Miura, N., and Yamazoe, N.: Nature of sensitivity promotion in Pd-loaded SnO2 gas sensor. J. Electrochem. Soc. 143, L148L150 (1996).CrossRefGoogle Scholar
Kim, S.S., Park, J.Y., Choi, S.W., Na, H.G., Yang, J.C., and Kim, H.W.: Enhanced NO2 sensing characteristics of Pd-functionalized networked In2O3 nanowires. J. Alloys Compd. 509, 91719177 (2011).CrossRefGoogle Scholar
Shaalan, N.M., Yamazaki, T., and Kikuta, T.: NO2 response enhancement and anomalous behavior of n-type SnO2 nanowires functionalized by Pd nanodots. Sens. Actuators, B 166167, 671677 (2012).CrossRefGoogle Scholar
Joshi, R.K., Hu, Q., Alvi, F., Joshi, N., and Kumar, A.: Au decorated zinc oxide nanowires for CO sensing. J. Phys. Chem. C 113, 1619916202 (2009).CrossRefGoogle Scholar
Mashock, M., Yu, K., Cui, S., Mao, S., Lu, G., and Chen, J.: Modulating gas sensing properties of CuO nanowires through creation of discrete nanosized p-n junctions on their surfaces. ACS Appl. Mater. Interfaces 4, 41924199 (2012).CrossRefGoogle ScholarPubMed
Lao, C., Li, Y., Wong, C.P., and Wang, Z.L.: Enhancing the electrical and optoelectronic performance of nanobelt devices by molecular surface functionalization. Nano Lett. 7, 13231328 (2007).CrossRefGoogle ScholarPubMed
Lee, A.P. and Reed, B.J.: Temperature modulation in semiconductor gas sensing. Sens. Actuators, B 60, 3542 (1999).CrossRefGoogle Scholar
Ponzoni, A., Depari, A., Comini, E., Faglia, G., Flammini, A., and Sberveglieri, G.: Exploitation of a low-cost electronic system, designed for low-conductance and wide-range measurements, to control metal oxide gas sensors with temperature profile protocols. Sens. Actuators, B 175, 149156 (2012).CrossRefGoogle Scholar
Roeck, F., Barsan, N., and Weimar, U.: Electronic nose: Current status and future trends. Chem. Rev. 108, 705725 (2008).CrossRefGoogle Scholar
Gutierrez-Osuna, R.: Pattern analysis for machine olfaction: A review. IEEE Sens. J. 2, 189202 (2002).CrossRefGoogle Scholar
Ponzoni, A., Baratto, C., Bianchi, S., Comini, E., Ferroni, M., Pardo, M., Vezzoli, M., Vomiero, A., Faglia, G., and Sberveglieri, G.: Metal oxide nanowire and thin-film-based gas sensors for chemical warfare simulants detection. IEEE Sens. J. 8, 735742 (2008).CrossRefGoogle Scholar
Chen, P.C., Ishikawa, F.N., Chang, H.K., Ryu, K., and Zhou, C.: A nanoelectronic nose: A hybrid nanowire/carbon nanotube sensor array with integrated micromachined hotplates for sensitive gas discrimination. Nanotechnology 20, 125503 (2009).CrossRefGoogle Scholar
Sysoev, V.V., Goschnick, J., Schneider, T., Strelcov, E., and Kolmakov, A.: A gradient microarray electronic nose based on percolating SnO2 nanowire sensing elements. Nano Lett. 7, 31823188 (2007).CrossRefGoogle ScholarPubMed
Strelcov, E., Dmitriev, S., Button, B., Cothren, J., Sysoev, V., and Kolmakov, A.: Evidence of self-heating effect on surface reactivity and gas sensing of metal oxide nanowire chemiresistors. Nanotechnology 19, 355502 (2008).CrossRefGoogle ScholarPubMed
Prades, J.D., Hernández-Ramírez, F., Fischer, T., Hoffmann, M., Müller, R., López, N., Mathur, S., and Morante, J.R.: Quantitative analysis of co-humidity gas mixtures with self-heated nanowires operated in pulsed mode. Appl. Phys. Lett. 97, 243105 (2010).CrossRefGoogle Scholar
Sysoev, V.V., Schneider, T., Goschnick, J., Kiselev, I., Habicht, W., Hahn, H., Strelcov, E., and Kolmakov, A.: Percolating SnO2 nanowire network as a stable gas sensor: Direct comparison of long-term performance versus SnO2 nanoparticle films. Sens. Actuators, B 139, 699703 (2009).CrossRefGoogle Scholar
Cao, L., Segal, S.R., Suib, S.L., Tang, X., and Satyapal, S.: Thermocatalytic oxidation of dimethyl methylphosphonate on supported metal oxides. J. Catal. 194, 6170 (2000).CrossRefGoogle Scholar
Comini, E., Baratto, C., Concina, I., Faglia, G., Falasconi, M., Ferroni, M., Galstyan, V., Gobbi, E., Ponzoni, A., Vomiero, A., Zappa, D., Sberveglieri, V., and Sberveglieri, G.: Metal oxide nanoscience and nanotechnology for chemical sensors. Sens. Actuators, B 179, 320 (2013).CrossRefGoogle Scholar
Sun, Y. and Ong, K.Y.: Detection Technologies for Chemical Warfare Agents and Toxic Vapors (CRC Press, Boca Raton, FL, 2005).Google Scholar
Sberveglieri, G., Baratto, C., Comini, E., Faglia, G., Ferroni, M., Pardo, M., Ponzoni, A., and Vomiero, A.: Semiconducting tin oxide nanowires and thin films for chemical warfare agents detection. Thin Solid Films 517, 61566160 (2009).CrossRefGoogle Scholar
Horvath, E., Ribic, P.R., Hashemi, F., Forro, L., and Magrez, A.: Dye metachromasy on titanate nanowires: Sensing humidity with reversible molecular dimerization. J. Mater. Chem. 22, 8778 (2012).CrossRefGoogle Scholar
Setaro, A., Bismuto, A., Lettieri, S., Maddalena, P., Comini, E., Bianchi, S., Baratto, C., and Sberveglieri, G.: Optical sensing of NO2 in tin oxide nanowires at sub-ppm level. Sens. Actuators, B 130, 391395 (2008).CrossRefGoogle Scholar
Faglia, G., Baratto, C., Sberveglieri, G., Zha, M., and Zappettini, A.: Adsorption effects of NO2 at ppm level on visible photoluminescence response of SnO2 nanobelts. Appl. Phys. Lett. 86, 011923 (2005).CrossRefGoogle Scholar
Djurišić, A.B., Leung, Y.H., Tam, K.H., Hsu, Y.F., Ding, L., Ge, W.K., Zhong, Y.C., Wong, K.S., Chan, W.K., Tam, H.L., Cheah, K.W., Kwok, W.M., and Phillips, D.L.: Defect emissions in ZnO nanostructures. Nanotechnology 18, 095702 (2007).CrossRefGoogle Scholar
Lettieri, S., Bismuto, A., Maddalena, P., Baratto, C., Comini, E., Faglia, G., Sberveglieri, G., and Zanotti, L.: Gas sensitive light emission properties of tin oxide and zinc oxide nanobelts. J. Non-Cryst. Solids 352, 14571460 (2006).CrossRefGoogle Scholar
Baratto, C., Todros, S., Faglia, G., Comini, E., Sberveglieri, G., Lettieri, S., Santamaria, L., and Maddalena, P.: Luminescence response of ZnO nanowires to gas adsorption. Sens. Actuators, B 140, 461466 (2009).CrossRefGoogle Scholar
Valerini, D., Cretì, A., Caricato, A.P., Lomascolo, M., Rella, R., and Martino, M.: Optical gas sensing through nanostructured ZnO films with different morphologies. Sens. Actuators, B 145, 167173 (2010).CrossRefGoogle Scholar
Lettieri, S., Setaro, A., Baratto, C., Comini, E., Faglia, G., Sberveglieri, G., and Maddalena, P.: On the mechanism of photoluminescence quenching in tin dioxide nanowires by NO2 adsorption. New J. Phys. 10, 043013 (2008).CrossRefGoogle Scholar
Liu, Y., Zhang, Y., Lei, H., Song, J., Chen, H., and Li, B.: Evolution of well-arrayed ZnO nanorods on thinned silica fibers and application for humidity sensing. Opt. Express 20, 1940419411 (2012).CrossRefGoogle Scholar
Konstantaki, M., Klini, A., Anglos, D., and Pissadakis, S.: An ethanol vapor detection probe based on a ZnO nanorod coated optical fiber long period grating. Opt. Express 20, 84728484 (2012).CrossRefGoogle ScholarPubMed
Nakagawa, M. and Yamashita, N.: Cataluminescence-based gas sensors. In Springer Series on Chemical Sensors and Biosensors, edited by Guillermo Orellana - Maria C. Moreno Bondi. Vol. 3, Springer-Verlag, Berlin Heidelberg, 2005; pp. 93132.Google Scholar
Yu, C., Liu, G., Zuo, B., Tang, Y., and Zhang, T.: A novel gaseous pinacolyl alcohol sensor utilizing cataluminescence on alumina nanowires prepared by supercritical fluid drying. Anal. Chim. Acta 618, 204209 (2008).CrossRefGoogle ScholarPubMed
Teng, F., Zhu, Y., He, G., Gao, G., and Meng, D.D.: Cataluminescence and catalysis properties of CO oxidation over porous network of ZrO2 nanorods synthesized by a bio-template. Open Catal. J. 2, 8691 (2009).CrossRefGoogle Scholar
Hahm, J. and Lieber, C.M.: Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett. 4(1), 51 (2004).CrossRefGoogle Scholar
Patolsky, F. and Lieber, C.M.: Nanowire nanosensors. Mater. Today 8, 20 (2005).CrossRefGoogle Scholar
Cui, Y., Wei, Q.Q., Park, H.K., and Lieber, C.M.: Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533), 1289 (2001).CrossRefGoogle ScholarPubMed
Wang, W.U., Chen, C., Lin, K.H., Fang, Y., and Lieber, C.M.: Label-free detection of small-molecule-protein interactions by using nanowire nanosensors. Proc. Natl. Acad. Sci. U.S.A. 102(9), 3208 (2005).CrossRefGoogle ScholarPubMed
Patolsky, F., Zheng, G.F., Hayden, O., Lakadamyali, M., Zhuang, X.W., and Lieber, C.M.: Electrical detection of single viruses. Proc. Natl. Acad. Sci. U.S.A. 101(39), 14017 (2004).CrossRefGoogle ScholarPubMed
Stern, E., Wagner, R., Sigworth, F.J., Breaker, R., Fahmy, T.M., and Reed, M.A.: Importance of the debye screening length on nanowire field effect transistor sensors. Nano Lett. 7(11), 3405 (2007).CrossRefGoogle ScholarPubMed
Poghossian, A., Cherstvy, A., Ingebrandt, S., Offenhausser, A., and Schoning, M.J.: Possibilities and limitations of label-free detection of DNA hybridization with field-effect-based devices. Sens. Actuators, B 111, 470 (2005).CrossRefGoogle Scholar
Zhang, G.J., Zhang, G., Chua, J.H., Chee, R.E., Wong, E.H., Agarwal, A., Buddharaju, K.D., Singh, N., Gao, Z.Q., and Balasubramanian, N.: DNA sensing by silicon nanowire: Charge layer distance dependence. Nano Lett. 8(4), 1066 (2008).CrossRefGoogle ScholarPubMed
Bunimovich, Y.L., Shin, Y.S., Yeo, W.S., Amori, M., Kwong, G., and Heath, J.R.: Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution. J. Am. Chem. Soc. 128(50), 16323 (2006).CrossRefGoogle ScholarPubMed
Zheng, G.F., Patolsky, F., Cui, Y., Wang, W.U., and Lieber, C.M.: Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 23(10), 1294 (2005).CrossRefGoogle ScholarPubMed
Stern, E., Klemic, J.F., Routenberg, D.A., Wyrembak, P.N., Turner-Evans, D.B., Hamilton, A.D., LaVan, D.A., Fahmy, T.M., and Reed, M.A.: Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 445(7127), 519 (2007).CrossRefGoogle ScholarPubMed
Li, C., Lei, B., Zhang, D.H., Liu, X.L., Han, S., Tang, T., Rouhanizadeh, M., Hsiai, T., and Zhou, C.W.: Chemical gating of In2O3 nanowires by organic and biomolecules. Appl. Phys. Lett. 83(19), 4014 (2003).CrossRefGoogle Scholar
Tang, T., Liu, X.L., Li, C., Lei, B., Zhang, D.H., Rouhanizadeh, M., Hsiai, T., and Zhou, C.W.: Complementary response of In2O3 nanowires and carbon nanotubes to low-density lipoprotein chemical gating. Appl. Phys. Lett. 86(10) (2005).CrossRefGoogle Scholar
Curreli, M., Li, C., Sun, Y.H., Lei, B., Gundersen, M.A., Thompson, M.E., and Zhou, C.W.: Selective functionalization of In2O3 nanowire mat devices for biosensing applications. J. Am. Chem. Soc. 127(19), 6922 (2005).CrossRefGoogle ScholarPubMed
Stutzmann, M., Garrido, J.A., Eickhoff, M., and Brandt, M.S.: Direct biofunctionalization of semiconductors: A survey. Phys. Status Solidi A 203(14), 3424 (2006).CrossRefGoogle Scholar
Zhou, J., Xu, N.S., and Wang, Z.L.: Dissolving behavior and stability of ZnO wires in biofluids: A study on biodegradability and biocompatibility of ZnO nanostructures. Adv. Mater. 18(18), 2432 (2006).CrossRefGoogle Scholar
Li, Z., Yang, R.S., Yu, M., Bai, F., Li, C., and Wang, Z.L.: Cellular level biocompatibility and biosafety of ZnO nanowires. J. Phys. Chem. C 112(51), 20114 (2008).CrossRefGoogle Scholar
Choi, A., Kim, K., Jung, H-I., and Lee, S.Y.: ZnO nanowire biosensors for detection of biomolecular interactions in enhancement mode. Sens. Actuators, B 148(2), 577 (2010).CrossRefGoogle Scholar
Liu, X., Lin, P., Yan, X., Kang, Z., Zhao, Y., Lei, Y., Li, C., Du, H., and Zhang, Y.: Enzyme-coated single ZnO nanowire FET biosensor for detection of uric acidibid. Sens. Actuators, B 176, 22 (2013).CrossRefGoogle Scholar
Yeh, P.H., Li, Z., and Wang, Z.L.: Schottky-gated probe-free ZnO nanowire biosensor. Adv. Mater. 21(48), 4975 (2009).CrossRefGoogle ScholarPubMed
Yu, R.M., Pan, C.F., and Wang, Z.L.: High performance of ZnO nanowire protein sensors enhanced by the piezotronic effect. Energy Environ. Sci. 6(2), 494 (2013).CrossRefGoogle Scholar
Zhang, F.F., Wang, X.L., Ai, S.Y., Sun, Z.D., Wan, Q., Zhu, Z.Q., Xian, Y.Z., Jin, L.T., and Yamamoto, K.: Immobilization of uricase on ZnO nanorods for a reagentless uric acid biosensor. Anal. Chim. Acta 519(2), 155 (2004).CrossRefGoogle Scholar
Wang, J.X., Sun, X.W., Wei, A., Lei, Y., Cai, X.P., Li, C.M., and Dong, Z.L.: Zinc oxide nanocomb biosensor for glucose detection. Appl. Phys. Lett. 88(23), 233106 (2006).CrossRefGoogle Scholar
Wei, A., Sun, X.W., Wang, J.X., Lei, Y., Cai, X.P., Li, C.M., Dong, Z.L., and Huang, W.: Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothermal decomposition ibid. App. Phys. Lett. 89(12), 123902 (2006).CrossRefGoogle Scholar