Hostname: page-component-7bb8b95d7b-dtkg6 Total loading time: 0 Render date: 2024-09-11T15:45:23.623Z Has data issue: false hasContentIssue false

Mechanoelectric transduction in bone

Published online by Cambridge University Press:  31 January 2011

Dennis A. Chakkalakal
Affiliation:
Research Service, VA Medical Center and Department of Orthopaedic Surgery, University of Nebraska Medical Center, Omaha, Nebraska 68105
Get access

Abstract

The cells in living bone are embedded in a charged, organic-inorganic solid permeated by ionic fluids flowing through a complex network of channels (diameter ∼10−1–102 μm). The solid matrix, which has a high degree of composite material organization beginning at the macromolecular level, has even finer pores of diameter ≳10−3 μm containing extracellular fluids. Since bone cells are thus bathed in fluid environments of varying ionic composition and concentration, it is likely that the physiology of bone depends on its electrical and electromechanical properties. This hypothesis is supported by the known effects of externally applied mechanical and electrical signals on physiological functions. Contrary to the earlier perception of bone as an insulating material, it is now recognized that the fluid content of bone endows it with physiologically significant conductivity. Mechanoelectric transduction in bone, at low frequencies, is most likely an electrokinetic process associated with the solid-fluid interfaces in bone. Electromechanical properties of bone have been determined experimentally by measurements of stress-generated potentials and streaming potentials in wet bone specimens and electrophoretic mobility of bone particles. Interpretation of results has been difficult due to the complexity of the solid-fluid interfaces in bone and the often undefinable alterations of the pores and interfaces due to specimen preparation. This paper is a review of the present state of knowledge of mechanoelectric transduction in bone and its physiological significance.

Type
Commentaries and Reviews
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Owen, M. E., Triffit, J. T., and Melick, R. A., in Ciba Foundation Symposium 11, Hard Tissue Growth, Repair and Remineralization (Associated Scientific Publishers, Amsterdam, 1973), pp. 263293.CrossRefGoogle Scholar
2Roesler, H., in Mechanical Properties of Bone, ASME-ASCE Symposium, edited by Cowen, S.C. (The American Society of Mechanical Engineers, New York, 1981), AMD-Vol. 45, pp. 2742.Google Scholar
3Currey, J., The Mechanical Adaptations of Bones (Princeton University Press, Princeton, 1984).CrossRefGoogle Scholar
4Bassett, C.A.L., in The Biochemistry and Physiology of Bone, edited by Bourne, G. H. (Academic Press, New York, 1972), Vol. III, 2nd ed., Ch. 1.Google Scholar
5Fukada, E. and Yasuda, I., J. Phys. Soc. Jpn. 12, 1158 (1957).CrossRefGoogle Scholar
6Bassett, C. A. L. and Becker, R. O., Science 137, 1063 (1962).CrossRefGoogle Scholar
7Eriksson, C., Ann. N.Y. Acad Sci. 238, 321 (1974).Google Scholar
8Eriksson, C., in The Biochemistry and Physiology of Bone, edited by Bourne, G.H. (Academic Press, New York, 1976), Vol. IV, Ch. 8.Google Scholar
9Friedenberg, Z. B. and Brighton, C.T., J. Bone Joint Surg. 48A, 915 (1966).Google Scholar
10Lokietek, W., Pawluk, R. J., and C. Bassett, A.L., J. Bone Joint Surg. 56B, 361 (1974).CrossRefGoogle Scholar
11Borgens, R.B., Science 225, 478 (1984).CrossRefGoogle Scholar
12Chakkalakal, D. A., Wilson, R. F. Jr , and Connolly, J. F., IEEE Trans. Biomed. Eng. BME-35, 19 (1988).CrossRefGoogle Scholar
13Chakkalakal, D.A., Wilson, R.F., Jr., and Connolly, J.F., Medical Instrumentation 22, 312 (1988).Google Scholar
14Barker, A.T., Jaffe, L.F., and Vanable, J. W. Jr , Am. J. Physiol. 242; Regulatory Integrative Comp. Physiol. 11, R358 (1982).Google Scholar
15Becker, R.O., Bassett, C.A.L., and Bachman, C.H., in Bone Biodynamics, edited by Frost, H. (Little, Brown & Co., Boston, MA, 1964), p. 209.Google Scholar
16Gold, P., J. Periodontol. 38, 31 (1967).CrossRefGoogle Scholar
17Bassett, C.A.L., Calc. Tiss. Res. 1, 252 (1968).CrossRefGoogle Scholar
18Liboff, A. and Shamos, M., in Biological Mineralization, edited by Zipkin, I. (John Wiley & Sons, New York, 1973), p. 335.Google Scholar
19Williams, W. S., CRC Crit. Rev. Bioeng. 2, 95 (1974).Google Scholar
20Guzelsu, N. and Demiray, H., Int. J. Engng. Sci. 17, 813 (1979).CrossRefGoogle Scholar
21Electrical Properties of Bone and Cartilage, edited by Brighton, C. T., Black, J., and Pollack, S. R. (Grime & Station, New York, 1979).Google Scholar
22Singh, S. and Saha, S., Clin. Orthop. 186, 249 (1984).Google Scholar
23Cochran, G.V.B., Pawluk, R.J., and Bassett, C.A.L., Clin. Orthop. 58, 249 (1968).Google Scholar
24Steinberg, M. E., Bosch, A., Schwan, A. Jr , and Glazer, R., Clin. Orthop. 61, 294 (1968).CrossRefGoogle Scholar
25Dwyer, N. St. J. P. and Mathews, B., Injury 1, 279 (1970).CrossRefGoogle Scholar
26Cochran, G.V.B., J. Biomech. 7, 563 (1974).CrossRefGoogle Scholar
27Lanyon, L.E. and Hartman, W., Calcif. Tiss. Res. 22, 315 (1977).CrossRefGoogle Scholar
28Hayes, W. C. and Snyder, B., in Mechanical Properties of Bone, ASMEASCE Symposium, edited by Cowin, S. C. (The American Society of Mechanical Engineers, New York, 1981), AMD-Vol. 45, p. 43.Google Scholar
29Frost, H. M., Bone Remodeling Dynamics (Charles C. Thomas, Springfield, 1963).Google Scholar
30McLean, F. C. and Urist, M. R., Bone (University of Chicago Press, 1968), 3rd ed.Google Scholar
31Glimcher, M.J., Handbook of Physiology-Endocrinology, edited by Greep, R. O. and Astwood, E.B. (American Physiological Society, Washington, DC, 1976), Vol. VII, p. 25.Google Scholar
32Carter, D. R. and Spengler, D. M., Clin. Orthop. 135, 192 (1978).Google Scholar
33Mathews, J. L., in Fundamental and Clinical Bone Physiology, edited by Urist, M.R. (J. B. Lippincott Co., Philadelphia, PA, 1980), Ch. 2.Google Scholar
34Triffit, J.T., ibid., Ch. 3.Google Scholar
35Neuman, W.F., ibid., Ch. 4.Google Scholar
36Boyde, A., in The Biochemistry and Physiology of Bone, edited by Bourne, G.H. (Academic Press, New York, 1972), Vol. I, p. 259.CrossRefGoogle Scholar
37Black, J., Mattson, R., and Korostoff, E., J. Biomed. Mater. Res. 8, 299 (1974).CrossRefGoogle Scholar
38Frasca, P., Harper, R., and Katz, J. L., Acta Anatomica 98, 1 (1977).CrossRefGoogle Scholar
39Frasca, P., Acta Anatomica 109, 114 (1981).Google Scholar
40Black, J. and Mattson, R.U., Calcif. Tissue Int. 34, 332 (1982).CrossRefGoogle Scholar
41Bonar, L. C., Lees, S., and Mook, H. A., J. Mol. Biol. 181, 265 (1985).Google Scholar
42Piekarski, K., J. Appl. Phys. 41, 215 (1970).CrossRefGoogle Scholar
43Neuman, W. F. and Neuman, M.W., The Chemical Dynamics of Bone Mineral (University of Chicago Press, Chicago, IL, 1985), pp. 138.Google Scholar
44Canas, F., Terepka, A.R., and Neuman, W.F., Am. J. Physiol. 217, 117 (1969).CrossRefGoogle Scholar
45Neuman, W. F. and Ramp, W. K., in Cellular Mechanisms for Calcium Transfer and Homeostasis, edited by Nichols, G. and Wasserman, R. H. (Academic Press, New York, 1971), p. 197.CrossRefGoogle Scholar
46Maeda, H. and Fukada, E., Biopolymers 21, 2055 (1982).CrossRefGoogle Scholar
47Reinish, G. B. and Nowick, A. S., in Electrical Properties of Bone and Cartilage, edited by Brighton, C. T., Black, J., and Pollack, S. R. (Grune & Stratton, New York, 1979), p. 13.Google Scholar
48Daniel, V. V., Dielectric Relaxation (Academic Press, New York, 1967), pp. 7887, 211-215, and 265-266.Google Scholar
49Nowick, A. S. and Berry, B. S., Anelastic Relaxation in Crystalline Solids (Academic Press, New York, 1972), p. 89.Google Scholar
50Chakkalakal, D. A., Johnson, M. W., Harper, R. A., and Katz, J. L., IEEE Trans. Biomed. Eng. BME-27, 95 (1980).CrossRefGoogle Scholar
51McCrum, N. G., Read, B. E., and Williams, G., Anelastic and Dielectric Effects in Polymeric Solids (Wiley, New York, 1967), pp. 121127 and 214-219.Google Scholar
52Nedetzka, T., Reichle, M., Mayer, A., and Vogel, H., J. Phys. Chem. 74, 2652 (1970).CrossRefGoogle Scholar
53Mascarenhas, S., Ann. N.Y. Acad. Sci. 238, 36 (1974).Google Scholar
54Chakkalakal, D. A. and Johnson, M.W., Clin. Orthop. 161, 133 (1981).CrossRefGoogle Scholar
55Kosterich, J. D., Foster, K. R., and Pollack, S. R., IEEE Trans. Biomed. Eng. BME-30, 81 (1983).CrossRefGoogle Scholar
56Kosterich, J.B., Foster, K.R., and Pollack, S.R., IEEE Trans. Biomed. Eng. BME-31, 369 (1984).CrossRefGoogle Scholar
57Chakkalakal, D.A., Proc. Soc. for Biomaterials 8, 15 (1982).Google Scholar
58Pethig, R., Dielectric and Electronic Properties of Biological Materials (John Wiley & Sons, New York, 1979), Chs. 5 and 7.Google Scholar
59Maeda, H., Tsuda, K., and Fukada, E., Jpn. J. Appl. Phys. 15, 2333 (1976).Google Scholar
60Marino, A. A., Becker, R. O., and Bachman, C. H., Phys. Med. Biol. 12, 367 (1967).CrossRefGoogle Scholar
61Reinish, G.B. and Nowick, A.S., J. Electrochem. Soc. 123, 1451 (1976).Google Scholar
62Lakes, R. S., Harper, R. A., and Katz, J. L., J. Appl. Phys. 48, 808 (1977).CrossRefGoogle Scholar
63Reddy, G. N. and Saha, S., IEEE Trans. Biomed. Eng. BME-31, 296 (1984).Google Scholar
64Saha, S. and Rai, D. V., Proc. Soc. for Biomaterials 13, 148 (1987).Google Scholar
65Saha, S. and Williams, P. A., in Biomedical Engineering V: Recent Developments, edited by Saha, S. (Pergamon Press, New York, 1986) p. 217.Google Scholar
66Tomaselli, V. P. and Shamos, M. H., Biopolymers 13, 2423 (1974).CrossRefGoogle Scholar
67Anderson, J. and Eriksson, C., Nature 218, 166 (1968).CrossRefGoogle Scholar
68Anderson, J. and Eriksson, C., Nature, 227, 491 (1970).CrossRefGoogle Scholar
69Eriksson, C., Clin. Orthop. 121, 295 (1976).Google Scholar
70Johnson, M.W., Chakkalakal, D.A., Harper, R.A., and Katz, J.L., J. Biomech. 13, 437 (1980).CrossRefGoogle Scholar
71Williams, W. S. and Breger, L., J. Biomech. 8, 407 (1975).CrossRefGoogle Scholar
72Johnson, M. W., The Electromechanical Effect in Bone, Ph.D. Thesis (University of Illinois at Urbana-Champaign, 1977).Google Scholar
73Johnson, M.W., Williams, W.S., and Gross, D., J. Biomech. 13, 565 (1980).Google Scholar
74Starkebaum, W., Pollack, S.R., and Korostoff, E., J. Biomed. Mater. Res. 13, 729 (1979).CrossRefGoogle Scholar
75Iannacone, W., Korostoff, E., and Pollack, S.R., J. Biomed. Mater. Res. 13, 753 (1979).CrossRefGoogle Scholar
76Johnson, M. W., Chakkalakal, D. A., Harper, R. A., Katz, J. L., and Rouhana, S.W., J. Biomech. 15, 881 (1982).Google Scholar
77Gross, D. and Williams, W. S., J. Biomech. 15, 277 (1982).CrossRefGoogle Scholar
78Williams, W. S., Ferroelectrics 41, 225 (1982).Google Scholar
79Grodzinsky, A. J., CRC Crit. Rev. Biomed. Eng. 9, 133 (1983).Google Scholar
80Pienkowski, D. and Pollack, S.R., J. Orthop. Res. 1, 30 (1983).CrossRefGoogle Scholar
81Johnson, M. W., Calcif. Tissue Int. 36, S72 (1984).CrossRefGoogle Scholar
82Pollack, S.R., Salzstein, R., and Pienkowski, D., Calcif. Tissue Int. 36, S77 (1984).CrossRefGoogle Scholar
83Pollack, S.R., Salzstein, R., and Pienkowski, D., Ferroelectrics 60, 297 (1984).Google Scholar
84Pollack, S.R., Petrov, N., Salzstein, R., Brankov, G., and Blagoeva, R., J. Biomech. 17, 627 (1984).Google Scholar
85Pollack, S. R., Orthopedic Clinics of North America 15, 3 (1984).Google Scholar
86Guzelsu, N. and Donofrio, J., J. Bioelec. 2, 187 (1983).CrossRefGoogle Scholar
87Guzelsu, N. and Regimbal, R. L., Trans. Bioelec. Rep. Growth Soc. 5, 8 (1985).Google Scholar
88Otter, M. W., Shoenung, J., and Williams, W. S., J. Orthop. Res. 3, 321 (1985).Google Scholar
89Otter, M.W., Goheen, S., and Williams, W.S., J. Orthop. Res. 6, 346 (1988).CrossRefGoogle Scholar
90Otter, M. W., Mechanisms for the Production of Stress-Generated Potentials in Biological Tissues, Ph.D. Thesis (University of Illinois at Urbana-Champaign, 1987).Google Scholar
91Berretta, D. A. and Pollack, S.R., J. Orthop. Res. 4, 337 (1986).CrossRefGoogle Scholar
92Salzstein, R. A., Pollack, S.R., Mak, A. F. T., and Petrov, N., J. Biomech. 20, 261 (1987).Google Scholar
93Salzstein, R. A. and Pollack, S.R., J. Biomech. 20, 271 (1987).Google Scholar
94Johnson, M. W. and Katz, J. L., in Handbook of Bioengineering, edited by Skalak, R. and Chien, S. (McGraw-Hill, New York, 1987), Ch. 3.Google Scholar
95Otter, M. W., Dell, D. S. G., Kadaba, M. P., and Cochran, G. V. B., Trans. Biolec. Rep. Growth Soc. 7, 7 (1987).Google Scholar
96Johnson, M. W., Dell, D. G., Palmieri, V. R., Kadaba, M. P., and Cochran, G. V. B., Proc. Soc. for Biomaterials 13, 151 (1987).Google Scholar
97Overbeek, J. Th. G., in Colloid Science, edited by Kruyt, H. R. (Elsevier Publishers, Amsterdam, 1952), p. 194.Google Scholar
98Piekarski, K. and Munro, P., Nature 269, 80 (1977).Google Scholar
99Piekarski, K., in Mechanical Properties of Bone, ASME-ASCE Symposium, AMD-Vol. 45, edited by Cowin, S. C. (The American Society of Mechanical Engineers, New York, 1981), p. 185.Google Scholar
100Cerquiglini, S., Cignitti, M., Marchetti, M., and Salleo, A., Life Sci. 6, 2651 (1967).CrossRefGoogle Scholar
101Cignitti, M., Figura, F., Marchetti, M., and Salleo, A., Arch. Fisiol. 68, 232 (1970/1971).Google Scholar
102Steinberg, M. E., Busenkell, G. L., Black, J., and Korostoff, E., J. Bone and Joint Surg. 56A, 704 (1974).CrossRefGoogle Scholar
103Eriksson, C. and Levin, A., S. Afr. J. Sci. 71, 345 (1975).Google Scholar
104Wilson, C. N., Miller, A. D., and Nilles, J. L., J. Biomed. Mater. Res. 9, 265 (1975).CrossRefGoogle Scholar
105Pollack, S. R., Korostoff, E., Steinberg, M. E., and Koh, J., J. Biomed. Mater. Res. 5, 677 (1977).Google Scholar