Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-23T12:42:24.287Z Has data issue: false hasContentIssue false

Mechanical Stress, Grain-boundary Relaxation, and Oxidation of Sputtered CuNi(Mn) Films

Published online by Cambridge University Press:  31 January 2011

W. Brückner
Affiliation:
Institute of Solid State and Materials Research Dresden, D-01171 Dresden, Germany
W. Pitschke
Affiliation:
Institute of Solid State and Materials Research Dresden, D-01171 Dresden, Germany
S. Baunack
Affiliation:
Institute of Solid State and Materials Research Dresden, D-01171 Dresden, Germany
J. Thomas
Affiliation:
Institute of Solid State and Materials Research Dresden, D-01171 Dresden, Germany
Get access

Abstract

This paper focuses on understanding stress development in CuNi42Mn1 thin films during annealing in Ar. In addition to stress-temperature measurements, resistance-temperature investigations and chemical and microstructural characterization by Auger electron spectroscopy, scanning and transmission electron microscopy, x-ray diffraction, and atomic force microscopy were also carried out. The films are polycrystalline with a grain size of 20 nm up to 450 °C. To explain the stress evolution above 120 °C, atomic rearrangement (excess-vacancy annihilation, grain-boundary relaxation, and shrinkage of grain-boundary voids) and oxidation were considered. Grain-boundary relaxation was found to be the dominating process up to 250–300 °C. A sharp transition from compressive to tensile stress between 300 and 380 °C is explained by the formation of a NiO surface layer due to reaction with the remaining oxygen in the Ar atmosphere. This oxidation is masking the inherent structural relaxation above 300 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nishino, I., Ichinose, Y., Sorimachi, Y., and Tsubata, I., Int. J. Hybrid Microelectronics 8, 18 (1985).Google Scholar
2.Brückner, W., Baunack, St., Elefant, D., and Reiss, G., J. Appl. Phys. 79, 8516 (1996).Google Scholar
3.Kiyokawa, H., Yonezawa, S., Horita, K., Unishi, T., and Takashima, M., Denki Kagaku 63, 648 (1995).Google Scholar
4.Berlicki, T. H., Osadnik, S. J., and Prociow, E. L., Vide Sci. Tech. Appl. (France) 279 suppl., 221 (1996).Google Scholar
5.Informationsdruck, Kupfer-Nickel-Legierungen Eigenschaften, Bearbeitung, Anwendung (Deutsches Kupfer-Institut, Düsseldorf, Germany, 1992), p. 2.Google Scholar
6.Brückner, W., Edelmann, J., Vinzelberg, H., Reiss, G., and Knuth, Th., Thin Solid Films 280, 227 (1996).CrossRefGoogle Scholar
7.Brückner, W., Baunack, St., Reiss, G., Leitner, G., and Knuth, Th., Thin Solid Films 258, 252 (1995).Google Scholar
8.Brückner, W., Macionczyk, F., and Reiss, G., in Thin Films: Stresses and Mechanical Properties VI, edited by Gerberich, W.W., Gao, H., Sundgren, J-E., and Baker, S. P. (Mater. Res. Soc. Symp. Proc. 436, Pittsburgh, PA, 1997), p. 47.Google Scholar
9.Doerner, M. F. and Nix, W. D., CRC Crit. Rev. Solid State Mater. Sci. 14, 225 (1988).Google Scholar
10.Venkatraman, R., in Materials Reliability in Microelectronics IV, edited by Børgesen, P., Coburn, J. C., Sanchez, J. E. Jr, Rodbell, K. P., and Filter, W.F. (Mater. Res. Soc. Symp. Proc. 338, Pittsburgh, PA, 1994), p. 215.Google Scholar
11.Bader, S., Kalaugher, E. M., and Arzt, E., Thin Solid Films 263, 175 (1995).Google Scholar
12.Thouless, M. D., Gupta, J., and Harper, J.M. E., J. Mater. Res. 8, 1845 (1993).CrossRefGoogle Scholar
13.Stoney, G. G., Proc. Roy. Soc. (London) A 82, 172 (1909).Google Scholar
14.Brückner, W., Sobe, G., Grieβmann, H., Baunack, St., and Reiss, G., Thin Solid Films 261, 90 (1995).Google Scholar
15.Warren, B.E. and Averbach, B. L., Acta Metall. 1, 22 (1953).Google Scholar
16.Gaarenstrom, S.W., Appl. Surf. Sci. 7, 7 (1981).Google Scholar
17.Brückner, W., Phys. Status Solidi A 148, K89 (1995).Google Scholar
18.Svensson, B., Ann. Phys. (Leipzig) 25, 263 (1936).Google Scholar
19.Iguchi, E. and Udagawa, K., J. Phys. F 5, 215 (1975).Google Scholar
20.Maniguet, L., Ignat, M., Dupeux, M., Bacmann, J.J., and Ph. Normandon, in Materials Reliability in Microelectronics III, edited by Rodbell, K.P., Filter, W. F., Frost, H.J., and Ho, P.S. (Mater. Res. Soc. Symp. Proc. 309, Pittsburgh, PA, 1993), p. 217.Google Scholar
21.Kohlrausch, F., Praktische Physik (B. G. Teubner, Stuttgart, 1996), Vol. 3, p. 22.Google Scholar
22.Mizushima, I., Chikazawa, M., and Watanabe, T., J. Electrochem. Soc. 143, 1978 (1966).Google Scholar
23.Owen, E.A. and Pickup, L., Z. Krist. A 88, 116 (1934).Google Scholar
24.Coles, B.R., J. Inst. Met. 84, 346 (1956).Google Scholar
25.Barber, Z.H. and Somekh, R.E., Vacuum 34, 991 (1984).Google Scholar
26.Brückner, W., Schumann, J., Baunack, St., Pitschke, W., and Knuth, Th., Thin Solid Films 258, 236 (1995).Google Scholar
27.Tsuji, K. and Hirokawa, K., Surf. Interface Anal. 17, 819 (1991).Google Scholar
28.Souchet, R., Lenglet, M., Miche, P., Weber, S., and Scherrer, S., Analysis Lett. 21, 173 (1993).Google Scholar
29.Druska, P. and Strehblow, H-H., Surf. Interface Anal. 23, 440 (1995).Google Scholar
30.Gleiter, H., Prog. Mater. Sci. 33, 223 (1989).Google Scholar
31.Ke, M., Hackney, S. A., Milligan, W.W., and Aifantis, E. C., Nano-Structured Mater. 5, 689 (1995).Google Scholar
32.Massalski, Th.B., Binary Alloy Phase Diagrams (ASM INTERNATIONAL, Materials Park, OH, 1990), Vol. 2, p. 1442.Google Scholar
33.Vollertsen, F. and Vogler, S., Werkstoffeigenschaften und Mikrostruktur (Carl Hanser Verlag, München, Wien, Germany, 1989), p. 279.Google Scholar
34.Lloyd, J. R. and Nakahara, S., Thin Solid Films 45, 411 (1977).Google Scholar
35.Trusov, L.I., Novikov, V. I., Repin, I. A., Kazilin, E.E., and Ganelin, V. J., Metallofizika 10, 104 (1988).Google Scholar
36.Siegel, R.W., Philos. Mag. 13, 359 (1966).Google Scholar
37.Lloyd, J. R. and Nakahara, S., J. Electrochem. Soc. 125, 2037 (1978).Google Scholar
38.Hoffman, R.W., Thin Solid Films 34, 185 (1976).Google Scholar
39.Vollertsen, F. and Vogler, S., Werkstoffeigenschaften und Mikrostruktur (Carl Hanser Verlag, München, Wien, Germany, 1989), p. 204.Google Scholar
40.Brown, W.F. Jr, Trans. Soc. Rheol. 9, 357 (1965).Google Scholar
41.Gupta, D. and Ho, P. S., Thin Solid Films 72, 399 (1980).Google Scholar