Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-11T13:27:54.501Z Has data issue: false hasContentIssue false

Mechanical behavior assessment of sucrose using nanoindentation

Published online by Cambridge University Press:  31 January 2011

K.J. Ramos
Affiliation:
Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164
D.F. Bahr*
Affiliation:
Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164
*
a)Address all correspondence to this author. e-mail: dbahr@wsu.edu
Get access

Abstract

An experimental study of the elastic and plastic properties of sucrose single crystals, which can be considered to be a model material for both pharmaceutical excipients and explosives, has been carried out using nanoindentation. Instrumented indentation was used to characterize the properties of both habit and cleavage planes on the (100) and (001) orientations; the elastic modulus on the (100) is 38 GPa, while the modulus on the (001) is 33 GPa. The hardness of sucrose is approximately 1.5 GPa. Nanoindentation enables assessment of the onset of plastic deformation on cleaved surfaces, and a maximum shear stress of 1 GPa can be supported prior to plastic deformation. The deformation in this material is crystallographically dependent, with pileup around residual indentation impressions showing evidence of preferential slip system activity.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Field, J.E., Chaudhri, M.M., Swallowe, G.M. Palmer, S.J.P.: Report No. Office of Naval Research Interim Report, DAJA37-81-C0081 1981Google Scholar
2Sheen, D.B., Sherwood, J.N., Gallagher, H.G., Littlejohn, A.H. Pearson, A.: Report No. Office of Naval Research Final Report N00014-87-J-11731993Google Scholar
3Kobayashi, T. Isoda, S.: Lattice images and molecular images of organic materials. J. Mater. Chem. 3, 1 1993CrossRefGoogle Scholar
4Thomas, J.M. Williams, J.O.: Dislocations and the reactivity of organic solids. Prog. Solid State Chem. 6, 119 1971CrossRefGoogle Scholar
5Mullarney, M.P., Hancock, B.C., Carlson, G.T., Ladipo, D.D. Langdon, B.A.: The powder flow and compact mechanical properties of sucrose and three high-intensity sweeteners in chewable tablets. Int. J. Pharm. 257, 227 2003CrossRefGoogle ScholarPubMed
6Hooks, D.E. Ramos, K.J.: Initiation mechanisms in Single Crystal Explosives: Dislocations, Elastic Limits, and Initiation Thresholds 13th International Detonation Symposium, Norfolk, VA 2006 455Google Scholar
7Armstrong, R.W.: Dislocation-assisted initiation of energetic materials. Central Eur. J. Energ. Mater. 2, 55 2005Google Scholar
8Armstrong, R.W., Coffey, C.S. Elban, W.L.: Adiabatic heating at a dislocation pile-up avalanche. Acta Metall. 30, 2111 1982CrossRefGoogle Scholar
9Walley, S.M., Field, J.E. Greenaway, M.W.: Crystal sensitivities of energetic materials. Mater. Sci. Technol. 22, 402 2006Google Scholar
10Duncan-Hewitt, W.C. Weatherly, G.C.: Evaluating the hardness, Young’s modulus and fracture toughness of some pharmaceutical crystals using microindentation techniques. J. Mater. Sci. Lett. 8, 1350 1989CrossRefGoogle Scholar
11Halfpenny, P.J., Roberts, K.J. Sherwood, J.N.: Dislocations in energetic materials; Part 3. Etching and microhardness studies of pentaerythritol tetramitrate and cyclotrimethylenetrintitramine. J. Mater. Sci. 19, 1629 1984CrossRefGoogle Scholar
12Liao, X. Wiedmann, T.S.: Characterization of pharmaceutical solids by scanning-probe microscopy. J. Pharm. Sci. 93, 2250 2004CrossRefGoogle ScholarPubMed
13Liao, X. Wiedmann, T.S.: Measurement of process-dependent material properties of pharmaceutical solids by nanoindentation. J. Pharm. Sci. 94, 79 2004CrossRefGoogle Scholar
14Duncan-Hewitt, W.C., Mount, D.L. Yu, A.: Hardness anisotropy of acetaminophen crystals. Pharm. Res. 11, 616 1994CrossRefGoogle ScholarPubMed
15Finnie, S., Prasad, K.V.R., Sheen, D.B. Sherwood, J.N.: Microhardness and dislocation identification studies on paracetamol single crystals. Pharm. Res. 18, 674 2001CrossRefGoogle ScholarPubMed
16Brookes, C.A., O’Neill, J.B. Redfern, B.A.W.: Anisotropy in the hardness of single crystals. Proc. R. Soc. London A 332, 73 1971Google Scholar
17Daniels, F.W. Dunn, C.G.: The effect of orientation on knoop hardness of single crystals of zinc and silicon ferrite. Trans. ASM 41, 419 1949Google Scholar
18Amelinckx, S.: The direct observation of dislocation nets in rock salt single crystals. Philos. Mag. 1, 269 1956CrossRefGoogle Scholar
19Gaillard, Y., Tromas, C. Woirgard, J.: Study of the dislocation structure involved in a nanoindentation test by atomic force microscopy and controlled chemical etching. Acta Mater. 51, 1059 2003CrossRefGoogle Scholar
20Gaillard, Y., Tromas, C. Woirgard, J.: Quantitative analysis of dislocation pile-ups nucleated during nanoindentation in MgO. Acta Mater. 54, 1409 2006CrossRefGoogle Scholar
21Sharma, J., Coffey, C.S., Armstrong, R.W., Elban, W.L. Hoover, S.M.: Sub-molecular fracture steps in shock-shattered RDX crystals and follow-on nano-indentation evaluation of early stage plasticity in Shock Compression of Condensed Matter, edited by M.D. Furnish, N.N. Thadhani, and Y. Horie (American Institute of Physics, 2001) 837Google Scholar
22Beevers, C.A., McDonald, T.R.R., Robertson, J.H. Stern, F.: The crystal structure of sucrose. Acta Crystallogr. 5, 689 1952CrossRefGoogle Scholar
23Brown, G.M. Levy, H.: Further refinement of the structure of sucrose based on neutron-diffraction data. Acta Crystallogr. B29, 790 1973CrossRefGoogle Scholar
24Duncan-Hewitt, W.C. Weatherly, G.C.: Modeling the uniaxial compaction of pharmaceutical powders using the mechanical properties of single crystals. II: Brittle materials. J. Pharm. Sci. 79, 273 1990CrossRefGoogle ScholarPubMed
25Millett, J.C.F. Bourne, N.K.: The shock Hugoniot of a plastic bonded explosive and inert stimulants. J. Phys. D: Appl. Phys. 37, 2613 2004CrossRefGoogle Scholar
26Sheffield, S.A., Gustavsen, R.L. Alcon, R.R.: Porous HMX initiation studies—sugar as an inert stimulant in Shock Compression of Condensed Matter, edited by S.C. Schmidt, D.P. Dandekar, and J.W. Forbes American Institute of Physics, Woodbury, NY 1997 575Google Scholar
27Heavens, S.N. Field, J.E.: The ignition of a thin layer of explosives by impact. Proc. R. Soc. London A 338, 77 1974Google Scholar
28Dick, J.J. Ritchie, J.P.: Molecular mechanics modeling of shear and the crystal orientation dependence of the elastic precursor shock strength in pentaerythritol tetranitrate. J. Appl. Phys. 76, 2726 1994CrossRefGoogle Scholar
29Dreger, Z.A., Gruzdkov, Y.A., Gupta, Y.M. Dick, J.J.: Shock wave induced decomposition chemistry of pentaerythritol tetranitrate single crystals: Time-resolved emission spectroscopy. J. Phys. Chem. B 106, 247 2002CrossRefGoogle Scholar
30Bahr, D.F., Kramer, D.E. Gerberich, W.W.: Non-linear deformation mechanism during nanoindentation. Acta Mater. 46, 3605 1998CrossRefGoogle Scholar
31Oliver, W.C. Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 1992CrossRefGoogle Scholar
32Johnson, K.L.: Contact Mechanics Cambridge University Press, New York 1985 93CrossRefGoogle Scholar
33Asif, S.A.S. Pethica, J.B.: Nanoindentation creep of single-crystal tungsten and gallium arsenide. Philos. Mag. A 76, 1105 1997CrossRefGoogle Scholar
34Mann, A.B. Pethica, J.B.: The role of atomic size asperities in the mechanical deformation of nanocontacts. Appl. Phys. Lett. 69, 907 1996CrossRefGoogle Scholar
35Schuh, C.A., Mason, J.K. Lund, A.C.: Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments. Nat. Mater. 4, 617 2005CrossRefGoogle ScholarPubMed
36Bahr, D.F. Vasquez, G.: Effect of solid solution impurities on dislocation nucleation during nanoindentation. J. Mater. Res. 20, 1947 2005CrossRefGoogle Scholar
37Nibur, K.A., Bahr, D.F. Somerday, B.P.: Hydrogen effects on dislocation activity in austenitic stainless steel. Acta Mater. 54, 2677 2006CrossRefGoogle Scholar
38Connick, W. May, F.G.J.: Dislocation etching of cyclotrimethylene trinitramine crystals. J. Cryst. Growth 5, 65 1969CrossRefGoogle Scholar
39Gallager, H.G., Halfpenny, P.J. Miller, J.C.: Dislocation slip systems in pentaerythritol tetranitrate (PETN) and cyclotrimethylene trinitramine (RDX). Philos. Trans. R. Soc. London Ser. A 339, 293 1992Google Scholar
40Halfpenny, P.J., Roberts, K.J. Sherwood, J.N.: Dislocations in energetic materials; Dislocation characterization and post-growth motion in single crystals of cyclotrimethylene trinitramine. Philos. Mag. A 53, 531 1986CrossRefGoogle Scholar
41Bahr, D.F. Gerberich, W.W.: Plastic zone and pileup around large indentations. Metall. Mater. Trans. A 27A, 3793 1996CrossRefGoogle Scholar
42Nibur, K.A. Bahr, D.F.: Identifying slip systems around indentations in FCC metals. Scripta Mater. 49, 1055 2003CrossRefGoogle Scholar
43Stelmashenko, N.A., Walls, M.G., Brown, L.M. Milman, Y.V.: Microindentation on W and Mo oriented single crystals: An STM study. Acta Metall. Mater. 41, 2855 1993CrossRefGoogle Scholar
44Duncan-Hewitt, W.C. Weatherly, G.C.: Evaluating the fracture toughness of sucrose crystals using microindentation techniques. Pharm. Res. 5, 373 1989CrossRefGoogle Scholar
45Duncan-Hewitt, W.C.: The use of microindentation techniques to assess the ability of pharmaceutical crystals to form strong compacts. Ph.D. Thesis, University of Toronto, Toronto, Canada 1988Google Scholar
46Page, T.F., Oliver, W.C. McHargue, C.J.: The deformation behavior of ceramic crystals subjected to very low load (nano)indentation. J. Mater. Res. 7, 450 1992CrossRefGoogle Scholar
47Tabor, D.: The Hardness of Metals Oxford University Press, Oxford, England 1951Google Scholar
48Bushby, A.J. Dunstan, D.J.: Plasticity size effects in nanoindentation. J. Mater. Res. 19, 137 2004CrossRefGoogle Scholar
49Swadner, J.B., Taljat, B. Pharr, G.M.: Measurement of residual stress by load and depth-sensing indentation with spherical indenters. J. Mater. Res. 16, 2091 2001CrossRefGoogle Scholar
50Thomas, J.M. Williams, J.O.: Lattice imperfections in organic solids. Faraday Soc. Trans. 63, 1922 1967CrossRefGoogle Scholar
51Perrier, P.R. Byrn, S.R.: Influence of crystal packing on the solid-state desolvation of purine and pyrimidine hydrates: Loss of water of crystallization from thymine monohydrate, cytosine monohydrate, 5-nittrouracil monohydrate, and 2′-Deoxyadenosine Monohydrate. J. Org. Chem. 47, 4671 1982CrossRefGoogle Scholar