Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T22:04:50.224Z Has data issue: false hasContentIssue false

Mass density of glassy Pd80Si20 during low-temperature light ion irradiation

Published online by Cambridge University Press:  31 January 2011

G. Schumacher
Affiliation:
Argonne National Laboratory, Materials Science Division, 9700 South Cass Avenue, Argonne, Illinois 60439
R. C. Birtcher
Affiliation:
Argonne National Laboratory, Materials Science Division, 9700 South Cass Avenue, Argonne, Illinois 60439
L. E. Rehn
Affiliation:
Argonne National Laboratory, Materials Science Division, 9700 South Cass Avenue, Argonne, Illinois 60439
Get access

Abstract

Changes in mass density of amorphous Pd80Si20 were monitored in situ during irradiation with He2+ and H+ ions at temperatures below 100 K and during subsequent thermal treatment. The mass density decreased with increasing ion fluence and exponentially approached a saturation value of −1.2%, corresponding to a recombination volume of 190 atomic volumes. The initial swelling rate was 2.3 atomic volumes/displaced atom. The mass density of the irradiated material increased during subsequent thermal treatment, and the irradiation-induced decrease of the mass density recovered completely at room temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Klaumuünzer, S. and Petry, W., Phys. Lett. 87A, 314 (1982).CrossRefGoogle Scholar
2Klaumuünzer, S., Schumacher, G., Rentzsch, S., Vogl, G., Soeldner, L., and Bieger, H., Acta Metall. 30, 1493 (1982).CrossRefGoogle Scholar
3Klaumuünzer, S. and Schumacher, G., Phys. Rev. Lett. 21, 1987 (1983).CrossRefGoogle Scholar
4Klaumuünzer, S., Hou, M-d., and Schumacher, G., Phys. Rev. Lett. 57, 850 (1986).CrossRefGoogle Scholar
5Hou, M., Klaumuünzer, S., and Schumacher, G., Phys. Rev. B 41, 1144 (1990).CrossRefGoogle Scholar
6Schumacher, G., Petry, W., Klaumuünzer, S., Wallner, G., and Weck, W., J. Phys. 12–C8, 603 (1985).Google Scholar
7Takamura, S. and Kobiyama, M., Radiat. Eff. Lett. 86, 43 (1984).CrossRefGoogle Scholar
8Kelton, K.F. and Spaepen, F., Phys. Rev. B 30, 5516 (1984).CrossRefGoogle Scholar
9Chason, E., Greer, A.L., Kelton, K.F., Pershan, P.S., Sorensen, L.B., Spaepen, F., and Weiss, A.H., Phys. Rev. B 32, 3399 (1985).CrossRefGoogle Scholar
10Biersack, J.P. and Haggmark, L.G., Nucl. Instrum. Methods 174, 257 (1980).CrossRefGoogle Scholar
11Jimenez, C.M., Lowe, L.F., Burke, E.A., and Sherman, C., Phys. Rev. 153, 735 (1967).CrossRefGoogle Scholar
12Chen, H.S., J. Appl. Phys. 49, 3289 (1978).CrossRefGoogle Scholar
13Matey, J.R. and Anderson, A.C., J. Non-Cryst. Solids 23, 129 (1977).CrossRefGoogle Scholar
14Schumacher, G., Birtcher, R.C., Renusch, D.P., Grimsditch, M., and Rehn, L.E., in Phase Transformations and Systems Driven Far from Equilibrium, edited by Ma, E., Bellon, P., Atzmon, M., and Trivedi, R. (Mater. Res. Soc. Symp. Proc. 481, Pittsburgh, PA, 1998), p. 445.Google Scholar
15Audouard, A., Balogh, J., Dural, J., and Jousset, C., Radiat. Eff. 62, 161 (1982).CrossRefGoogle Scholar
16Himmler, U., Peisl, H., Sepp, A., Waidelich, W., and Wenzl, H., Z. Angew. Phys. 23, 8 (1967).Google Scholar
17Wagner, H., Dworschak, F., and Schilling, W., Phys. Rev. B 2, 3856 (1970).CrossRefGoogle Scholar
18Dworschak, F., Wagner, H., and Wombacher, P., Phys. Status Solidi 52, 103 (1972).CrossRefGoogle Scholar
19Himmler, U., Peisl, H., Sepp, A., Waidelich, W., and Wenzl, H., Z. Angew. Phys. 28, 175 (1969).Google Scholar
20Hertz, W., Thesis, TU Munich, Munich, Germany, 1973.Google Scholar
21Doünitz, W., Hertz, W., Weidelich, W., Peisl, H., and Boüning, K., Phys. Status Solidi (A) 22, 501 (1974).CrossRefGoogle Scholar
22Moser, P., Hautojaürvi, P., Yli-Kauppila, J., and Corbel, C., Radiat. Eff. 62, 153 (1982).CrossRefGoogle Scholar
23Ehrhardt, P., in Landolt-Boürnstein: Atomic Defects in Metals, edited by Ullmaier, H. (Springer-Verlag, Berlin, Germany, 1997), p. 202.Google Scholar
24Masumoto, T. and Maddin, R., in Amorphous Metallic Alloys, edited by Luborsky, F.E. (Butterworth, London, United Kingdom, 1983), p. 187.Google Scholar
25Spaepen, F., Acta Metall. 25, 407 (1977).CrossRefGoogle Scholar
26Yli-Kauppila, J., Moser, P., Kuünzi, H., and Hautojaürvi, P., Appl. Phys. A 27, 31 (1982).CrossRefGoogle Scholar
27Suzuki, K., in Amorphous Metallic Alloys, edited by Luborsky, F.E. (Butterworth, London, United Kingdom, 1983), pp. 7479.CrossRefGoogle Scholar
28Schumacher, G., Klaumuünzer, S., Petry, W., and Dedek, U., J. Phys. F 18, 1681 (1988).CrossRefGoogle Scholar
29Schumacher, G., Klaumuünzer, S., Petry, W., Wallner, G., Weck, W., and Dedek, U., Z. Phys. Chem. Neue Folge157, 313 (1988).CrossRefGoogle Scholar
30Van den Beukel, A., Scr. Metall. 20, 783 (1986).CrossRefGoogle Scholar