Hostname: page-component-5c6d5d7d68-vt8vv Total loading time: 0.001 Render date: 2024-08-19T04:16:19.489Z Has data issue: false hasContentIssue false

Luminescence and decay times Eu(III) and Nd(III) in polymer electrolytes

Published online by Cambridge University Press:  31 January 2011

L. D. Carlos*
Affiliation:
Departamento de Física, Universidade de Aveiro, 3800 Aveiro, Portugal
M. Assunção
Affiliation:
Departamento de Física, Universidade de Aveiro, 3800 Aveiro, Portugal
*
a)Address all correspondence to this author.
Get access

Abstract

Time-resolved spectroscopy of poly(ethylene) oxide (PEO) and poly(propylene) oxide (PPO) electrolytes containing different concentrations of Eu3+ and Nd3+ ions is reported. A description of the main luminescence features of the Nd3+ electrolytes is also presented. Lifetimes regarding the main transitions of the luminescence spectra (5D07F1,2 and 4D3/24I11/2 for Eu3+ and Nd3+, respectively) are determined and are presented as a function of temperature in the range of 13 to 310 K. The order of magnitude of the values obtained at room temperature (0.2–0.6 ms and ≈0.7 ms for Eu3+ and Nd3+, respectively) is a further indication of the technological potential of these new polymeric materials. For the Eu3+ ion the thermally activated quenching of the 5D07F2 luminescence is discussed in terms of the observed energy superposition between the 5D0,1 levels and the ligands-to-metal charge-transfer states.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Reis Machado, A. S. and Alcácer, L., 2nd Int. Symp. on Polymer Electrolytes, edited by Scrosati, B. (Elsevier Applied Science London, 1990), p. 283.Google Scholar
2.Huq, R. and Farrington, G. C., 2nd Int. Symp. on Polymer Electrolytes, edited by Scrosati, B. (Elsevier Applied Science, London, 1990), p. 281.Google Scholar
3.Silva, C. J. and Smith, M. J., Solid State Ionics 58, 269 (1992); 60, 73 (1993).Google Scholar
4.Carlos, L. D., Assunção, M., Abrantes, T. M., and Alcácer, L., in Solid State Ionics III, edited by Nazri, G-A., Tarascon, J.-M., and Armand, M. (Mater. Res. Soc. Symp. Proc. 293, Pittsburgh, PA, 1993), p. 117.Google Scholar
5.Carlos, L. D. and Videira, A. L. L., Phys. Rev. B 49, 11721 (1994).CrossRefGoogle Scholar
6.Carlos, L. D. and Videira, A. L. L., J. Chem. Phys. 101, 8827 (1994).CrossRefGoogle Scholar
7.Carlos, L. D., Assunção, M., and Alcácer, L., J. Mater. Res. 10, 202 (1995).CrossRefGoogle Scholar
8.Carlos, L. D., Videira, A. L. L., Assunção, M., and Alcácer, L., Electrochim. Acta 40, 2143 (1995).CrossRefGoogle Scholar
9.Puga, M. M. S., Carlos, L. D., Abrantes, T. M., and Alcácer, L., Electrochim. Acta 40, 2383 (1995).CrossRefGoogle Scholar
10.Puga, M. M. S., Carlos, L. D., Abrantes, T. M., and Alcácer, L., Chem. Mater. 12, 2316 (1996).Google Scholar
11.Carlos, L. D., Assunção, M., and Alcácer, L., Synth. Metals 69, 587 (1995).CrossRefGoogle Scholar
12.Brodin, A., Mattsson, B., and Torell, L. M., J. Chem. Phys. 101, 462 (1994).CrossRefGoogle Scholar
13.Fuxi, G., Optical and Spectroscopic Properties of Glass (SpringerVerlag, New York, 1992).Google Scholar
14.Brecher, C. and Riseberg, L. A., Phys. Rev. B 13, 81 (1976); 22, 2607 (1980).CrossRefGoogle Scholar
15.Imbusch, G. F., in Advances in Nonradiative Processes in Solids, edited by DiBartolo, B. (Plenum Press, New York, 1991), p. 261.CrossRefGoogle Scholar
16.Hazenkamp, M. F., Blasse, G., and Sabbatini, N., J. Phys. Chem. 95, 783 (1991).CrossRefGoogle Scholar
17.Blasse, G., Buys, M., and Sabbatini, N., Chem. Phys. Lett. 124, 538 (1986).CrossRefGoogle Scholar
18.Hazenkamp, M. F., Blasse, G., Sabbatini, N., and Ungaro, R., Inorg. Chem. Acta 93, 172 (1990).Google Scholar
19.Hazenkamp, M. F. and Blasse, G., Chem. Mater. 2, 105 (1990).CrossRefGoogle Scholar
20.Hüfner, S., Optical Spectra of Transparent Rare Earth Compounds (Academic Press, New York, 1978), p. 130.Google Scholar
21.Sinha, A. P. B., in Spectroscopy in Inorganic Chemistry, edited by Rao, C. N. R. and Ferraro, J. R. (Academic Press, New York, 1971), p. 255.CrossRefGoogle Scholar
22.Krupke, W. F., Phys. Rev. 145, 325 (1966).CrossRefGoogle Scholar
23.Caro, P., Svoronos, D-R., Antic, E., and Quarton, M., J. Chem. Phys. 66, 5284 (1977); P. Caro, J. Derouet, L. Beaury, and E. Soulie, J. Chem. Phys. 70, 2542 (1979).CrossRefGoogle Scholar
24.Sabbatini, N., Guardigli, M., and Lehn, J-M., Coord. Chem. Rev. 123, 201 (1993).CrossRefGoogle Scholar
25.Blasse, G., Dirksen, G. J., Van Der Voort, D., Sabbatini, N., Perathonr, S., Lehn, J-M., and Alpha, B., Chem. Phys. Lett. 146, 347 (1988); J. Phys. Chem. 92, 2419 (1988).CrossRefGoogle Scholar
26.Fermi, F., Tellini, L., Ingletto, G., Vinattieri, A., and Bettinelli, M., Inorg. Chem. Acta 150, 141 (1988).CrossRefGoogle Scholar
27.Struck, C. W. and Fonger, W. H., Phys. Rev. B 4, 22 (1971); J. Chem. Phys. 64, 1784 (1976); ibid., in Advances in Nonradia-tive Processes in Solids, edited by B. DiBartolo (Plenum Press, New York, 1991), p. 63.CrossRefGoogle Scholar
28.Blasse, G., in Radiationless Processes, edited by DiBartolo, B. (Plenum Press, New York, 1980), p. 287; ibid., in Advances in Nonradiative Processes in Solids, edited by Di, B.Bartolo (Plenum Press, New York, 1991), p. 287.CrossRefGoogle Scholar
29.Blasse, G. and Sabbatini, N., Mater. Chem. Phys. 16, 237 (1987).CrossRefGoogle Scholar
30.Freed, K. and Jortner, J., J. Chem. Phys. 52, 6277 (1970).Google Scholar
31.Canny, B. and Curie, D., in Advances in Nonradiative Processes in Solids, edited by DiBartolo, B. (Plenum Press, New York, 1991), p. 1.Google Scholar