Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-22T21:45:02.524Z Has data issue: false hasContentIssue false

Low-temperature synthesis of ultrafine La0.84Sr0.16MnO3 powder by an autoignition process

Published online by Cambridge University Press:  03 March 2011

Amitava Chakraborty
Affiliation:
Electroceramics Laboratory, Central Glass & Ceramic Research Institute, Calcutta 700 032, India
P. Sujatha Devi
Affiliation:
Electroceramics Laboratory, Central Glass & Ceramic Research Institute, Calcutta 700 032, India
Sukumar Roy
Affiliation:
Electroceramics Laboratory, Central Glass & Ceramic Research Institute, Calcutta 700 032, India
H. S. Maiti
Affiliation:
Electroceramics Laboratory, Central Glass & Ceramic Research Institute, Calcutta 700 032, India
Get access

Abstract

A simple and convenient method for low-temperature synthesis of La0.84Sr0.16MnO3 powder is described. The technique involves autoignition of a carboxylate (citrate + acetate)-nitrate gel resulting from a thermally induced anionie oxidation-reduction reaction to yield an ash, which upon calcination produces the desired powder. The resulting powder is pure, homogeneous, and possesses ultrafine particle size of the order of 0.3 to 0.5 μm. The autoignition is restricted to a particular range of carboxylate to nitrate ratio in the gel. Attempts have been made to understand the ignition process with the help of Thermogravimetry (TG) and Differential Thermal Analysis (DTA) of the samples. The process appears to have a higher degree of reproducibility and a good material yield (more than 96%) suitable for large-scale production.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Rohr, F. J., in Solid Electrolytes, edited by Hagenmiiller, P. and Vangool, W. (Academic Press, New York, 1978), p. 431.CrossRefGoogle Scholar
2Rohr, F. J., in Proc. Workshop on High Temperature Solid Oxide Fuel Cells, edited by Isaacs, H. S., Srinivasan, S., and Harry, I. L. (Brookhaven National Laboratory, Upton, NY, 1978), p. 122.Google Scholar
3Kertesz, M., Riess, I., Tannhauser, D. S., Langpape, R., and Rohr, F. J., J. Solid State Chem. 42, 125 (1982).CrossRefGoogle Scholar
4Hammouche, A., Siebert, E., and Hammou, A., Mater. Res. Bull. XXIV, 367 (1989).CrossRefGoogle Scholar
5Tascon, J. M. D., Mendioroz, S., and Gonzalez Tejuca, L., Z. Phys. Chem. (N.F) 124, 109 (1981).CrossRefGoogle Scholar
6Baythoun, M. S. G. and Sale, F. R., J. Mater. Sci. 17, 2757 (1982).CrossRefGoogle Scholar
7Zhang, H. M., Teraoka, Y., and Yamazoe, N., Chem. Lett., 665 (1987).CrossRefGoogle Scholar
8Taguchi, H., Matsuda, D., Nagao, M., Tanihata, K., and Miyamoto, Y., J. Am. Ceram. Soc. 75, 201 (1992).CrossRefGoogle Scholar
9Bilger, S., Syskakis, E., Naoumidis, A., and Nickel, H., J. Am. Ceram. Soc. 75, 964 (1992).CrossRefGoogle Scholar
10Prokudina, S. A., Rubinchik, Ya. S., and Pavlyuchenko, M. M., Inorg. Mater. 10, 416 (1974).Google Scholar
11van Roosmalen, J. A. M., Huijsmans, J. P. P., and Cordfunke, E.H.P., in Proc. 2nd Int. Symp. on Solid Oxide Fuel Cells, edited by Grosz, F., Zegers, P., Singhal, S. C., and Yamamoto, O. (Commission of the European Communities, Luxembourg, Belgium, 1991), p. 507.Google Scholar
12Johnson, D. W., Gallagher, P. K., Schrey, F., and Rhodes, W. W., Am. Ceram. Soc. Bull. 55, 520 (1976).Google Scholar
13Gallagher, P. K., Johnson, D. W., and Vogel, E. M., J. Am. Ceram. Soc. 60, 28 (1977).CrossRefGoogle Scholar
14Chick, L. A., Pederson, L. R., Maupin, G. D., Bates, J. L., Thomas, L. E., and Exarhos, G. J., Mater. Lett. 10, 6 (1990).CrossRefGoogle Scholar
15Christiansen, N. and Gordes, P., in Proc. 2nd Int. Symp. on Solid Oxide Fuel Cells, edited by Grosz, F., Zegers, P., Singhal, S. C., and Yamamoto, O. (Commission of the European Communities, Luxembourg, Belgium, 1991), p. 495.Google Scholar
16Roy, S., Das Sharma, A., Roy, S. N., and Maiti, H. S., J. Mater. Res. 8, 2761 (1993).CrossRefGoogle Scholar
17Devi, P. S. and Maiti, H. S., J. Solid State Chem. (in press).Google Scholar
18Kourtakis, K., Robbins, M., and Gallagher, P. K., J. Solid State Chem. 82, 290 (1988).CrossRefGoogle Scholar
19Kourtakis, K., Robbins, M., and Gallagher, P. K., J. Solid State Chem. 83, 230 (1989).CrossRefGoogle Scholar
20Kourtakis, K., Robbins, M., and Gallagher, P. K., J. Solid State Chem. 84, 88 (1990).CrossRefGoogle Scholar