Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-19T23:02:56.463Z Has data issue: false hasContentIssue false

The Low-temperature Initial Oxidation Stages of Cu(100) Investigated by in situ Ultra-high-vacuum Transmission Electron Microscopy

Published online by Cambridge University Press:  01 July 2005

L. Sun*
Affiliation:
Department of Materials Science and Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
J.C. Yang
Affiliation:
Department of Materials Science and Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
*
a)Address all correspondence to this author. e-mail: lis14@pitt.edu
Get access

Abstract

The nucleation and growth of Cu2O islands due to Cu(100) oxidation at temperatures from 200 to 350 °C have been observed by in situ ultra-high-vacuum transmission electron microscopy. For this temperature range, epitaxial Cu2O islands form a triangular shape with rounded edges when Cu(100) is exposed to dry oxygen at 5 × 10−4 Torr in situ. Our initial analysis on the nucleation and growth of these three-dimensional Cu2O islands agrees well with the heteroepitaxial model of surface diffusion of oxygen.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Carbera, N. and Mott, N.F.: Theory of the oxidation of metals. Rep. Prog. Phys. 12, 163 (1948).Google Scholar
2Besenbacner, F. and Norskov, J.K.: Oxygen chemisorption on metal surfaces: General trends for Cu, Ni and Ag. Prog. Surf. Sci. 44, 5 (1993).CrossRefGoogle Scholar
3Tanaka, K., Fujita, T. and Okawa, Y.: Oxygen induced order-disorder reconstrcturing of a Cu(100) surface. Surf. Sci. 401 L407 (1998).CrossRefGoogle Scholar
4Lederer, T., Arvanitis, D. and Comelli, G.: Adsorption of oxygen on Cu(100): I. Local structure and dynamics for two atomic chemisorption states. Phys. Rev. B 48, 15390 (1993).CrossRefGoogle ScholarPubMed
5Orr, W.H. Oxide nucleation and growth. Ph.D. Dissertation, Cornell University, Ithaca, NY, 1962.Google Scholar
6Holloway, P.H. and Hudson, J.B.: Kinetics of the reaction of oxygen with clean nickel single crystal surface. Surf. Sci. 43, 123 (1974).CrossRefGoogle Scholar
7Lawless, K.R. and Gwathmey, A.T.: The structure of oxide films on different faces of a single crystal of copper. Acta Metall. 4, 153 (1956).CrossRefGoogle Scholar
8Young, F., Cathcart, J. and Gwathmey, A.: The rates of oxidation of several faces of a single crystal of copper as determined with elliptically polarized light. Acta Metall. 4, 145 (1956).CrossRefGoogle Scholar
9Milne, R.H. and Howie, A.: electron microscopy of copper oxidation. Philos. Mag. A 49, 665 (1984).CrossRefGoogle Scholar
10Heinemann, K., Rao, D.B. and Douglas, D.L.: Oxide nucleation on thin film of copper during in situ oxidation in a electron microscopy. Oxid. Met. 9, 379 (1975).CrossRefGoogle Scholar
11Yang, J.C., Yeadon, M., Kolasa, B. and Gibson, J.M.: The homogeneous nucleation mechanism of Cu2O on Cu (001). Scripta Mater. 38, 1237 (1998).CrossRefGoogle Scholar
12Yang, J.C., Yeadon, M., Kolasa, B. and Gibson, J.M.: Oxidation surface diffusion in three-dimensional Cu2O growth on Cu (001) thin film. Appl. Phys. Lett. 70, 3522 (1997).CrossRefGoogle Scholar
13Yang, J.C., Evan, C. and Tropia, L.: From nucleation to coalescence of CuB2BO islands during in situ oxidation of Cu(001). Appl. Phys. Lett. 81, 241 (2002).CrossRefGoogle Scholar
14Zhou, G.W. and Yang, J.C.: Formation of quasi-one-dimensional CuB2BO structure by in situ oxidation of Cu(100). Phys. Rev. Lett. 89, 106101 (2002).CrossRefGoogle ScholarPubMed
15Venables, J.A., Spiller, G.D.T. and Hanbuecken, M.: Nucleation and growth of thin film. Rep. Prog. Phys. 47, 399 (1984).CrossRefGoogle Scholar
16Zhou, G.W. and Yang, J.C.: Initial oxidation of copper (110) film investigated by in situ UHV-TEM. Surf. Sci. 531, 359 (2003).CrossRefGoogle Scholar
17McDonald, M.L., Gibson, J.M. and Unterwaild, F.C.: Design of an ultrahigh-vacuum specimen environment for high-resolution transmission electron microscopy. Rev. Sci. Instrum. 60, 700 (1989).CrossRefGoogle Scholar
18Francis, S.M., Leibsle, F.M., Haq, S., Xiang, N. and Bowker, M.: Scanning tunnelling microscopy on the 6H SiC(0001) surface. Surf. Sci. 315, 284 (1994).CrossRefGoogle Scholar
19Yang, J.C., Yeadon, M., Kolasa, B. and Gibson, J.M.: Surface reconstruction and oxide nucleation due to oxygen interaction with Cu(001) observed by in situ ultra-high vacuum transmission electron microscopy. Microsc. Microanal. 4, 334 (1998).CrossRefGoogle ScholarPubMed
20Yang, J.C. and Zhou, G.W.: The surface oxidation kinetics of Cu(100) and (110) thin films visualised by in situ UHV-TEM. J. Corros. Sci. Eng. 6 H054 (2003).Google Scholar
21Miller, P.C., Liu, C.P. and Gibson, J.M.: TEM measurement of strain in coherent quantum heterostructures. Ultramicroscopy 84, 225 (2000).CrossRefGoogle ScholarPubMed
22Miller, P.C., Liu, C.P., Henstrom, W.L., Gibson, J.M., Huang, Y., Zhang, P., Kamins, T.I., Basile, D.P. and Williams, R.S.: Direct measurement of strain in a Ge island on Si (001). Appl. Phys. Lett. 75, 46 (1999).CrossRefGoogle Scholar
23Hirsch, M.A., Howie, A., Nicholson, R., Pashley, D.W. and Whelan, M.J.: Electron Microscopy of Thin Crystals (Butterworths, London, U.K., 1967).Google Scholar
24Tobin, J.G., Klebanoff, L.E., Rosenblatt, D.H. and Davis, R.F.: Normal photoelectron diffraction of O/Cu(001): A surface– structural determination. Phys. Rev. B 26, 7076 (1982).CrossRefGoogle Scholar
25Jacobsen, K.W. and Norskov, J.K.: Theory of the oxygen-induced reconstructing of Cu(110) and C (100) surfaces. Phys. Rev. Lett. 65, 1788 (1990).CrossRefGoogle Scholar
26Jensen, F., Besenbacher, F., Laegsgaard, E. and Stensgaard, I.: Dynamics of oxygen-induced reconstruction of Cu(100) studied by scanning tunneling microscopy. Phys. Rev. B 42, 9206 (1990).CrossRefGoogle ScholarPubMed
27Robinson, I.K. and Vlieg, E.: Oxygen-induced missing-row reconstruction of Cu(001) and Cu(001): Vicinal surface. Phys. Rev. B 42, 6954 (1990).CrossRefGoogle Scholar
28Coulmann, D.J., Wintterlin, J., Behm, R.J. and Ertl, G.: Novel mechanism for the formation of chemisorption phase: The (2 × 1)O–Cu(110) added-row reconstruction. Phys. Rev. Lett. 64, 1761 (1990).CrossRefGoogle Scholar
29Tanaka, K., Fujita, T. and Okawa, Y.: Oxygen induced order-disorder reconstructing of a Cu(100) surface. Surf. Sci. 401 L407 (1998).CrossRefGoogle Scholar
30Leibsle, F.M.: STM studies of oxygen-induced structures and nitrogen coadsorption on the Cu(100) surface: Evidence for a one-dimensional oxygen reconstruction and reconstruction interactions. Surf. Sci. 337, 51 (1998).CrossRefGoogle Scholar
31Zhou, G.W. and Yang, J.C.: Temperature effect on the CuB2BO oxide morphology created by oxidation of Cu(001) as investigated by in situ UHV TEM. Appl. Phys. Lett. 210, 165 (2003).Google Scholar
32Penev, E., Kratzer, P. and Scheffler, M.: Effect of strain on surface diffusion in semiconductor heteroepitaxy. Phys. Rev. B 64, 5401 (2001).CrossRefGoogle Scholar
33Markworth, P.R., Liu, X., Dai, J-Y., Fan, W., Marks, T.J. and Chang, R.P.H.: Coherent island formation of Cu2O film grown by chemical vapor deposition on MgO (110). J. Mater. Res. 16, 2408 (2001).CrossRefGoogle Scholar
34Weast, R.C.: Handbook of Chemistry and Physics, 61st ed. (CRC Press, Boca Raton, FL, 1981), pp. F-4 5.Google Scholar